
Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

Introduction to Computational Physics: 15
Questions

Herbstsemester 2013

Giuseppe Accaputo

Rechnergestützte Wissenschaften, BSc

Congruential and lagged-Fibbonacci random number
generators

Congruential RNG (Multiplicative)

• Let us assume that we chose two integer numbers c and p and a seed value x0
with c, p, x0 ∈ Z. We then create the sequence xi ∈ Z, i ∈ N iteratively by

xi = (c · xi−1) mod p

• In order to transform these random numbers to the interval [0, 1) we simply
divide by p.

0 ≤ zi =
xi
p
< 1

• The sequence must repeat after at least p − 1 iterations. Thus, the maximal
period of this random number generator (RNG) is p− 1.

• Also, by picking x0 = 0 the sequence sits on a fixed point 0. This means x0 = 0
cannot be used.

• R.D. Carmicheal proved 1910 that one gets maximal period if p is a Mersenne
prime number (Mq = 2q−1) and the smallest number for which cp−1 mod p = 1

Giuseppe Accaputo 1 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

Lagged Fibonacci RNG (Additive)

• Consider a sequence of binary numbers xi ∈ 0, 1, 1 ≤ i ≤ b. Next bit in our
sequence, xb+1 is then given by

xb+1 =

(∑
j∈J

xb+1−j

)
mod 2 J ⊂ [1, . . . , b]

• Two element lagged Fibonacci generator:

xi+1 = (xi−a + xi−b) mod 2 a < b

If (a, b) Zierler trinomial, i.e. Ta,b(z) = 1 + za + zb, then the sequence has
maximal period 2b − 1 and

How good is a RNG?

1. Square test: plot two consecutive random numbers. The plot should be dis-
tributed homogeneously. Any sign of lines or clustering shows the non-randomness
and correlation of the sequence.

2. Cube test: similar to square test, but this time the plot is three-dimensional.

3. Average value: Aritthmetic mean should correspond to the analytical mean value.

Definition of percolation

• Percolation describes the movement or filtering of fluids through porous media
and is used to study phase transitions

– A phase transition occurs when a material changes its properties in a dra-
matic way (Ising model: a magnet, when heated loses its magnetism)

– Phase transitions are characterized by an order parameter

∗ Ising: magnetization M(T)

∗ Percolation: fraction of sites which belong to the biggest cluster P (p)

– Order parameter behave like a power law in the region close to a critical
point

∗ Ising: M ∝ (T − Tc)β

∗ Percolation: P (p) ∝ (p− pc)β

Giuseppe Accaputo 2 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

• Simplest percolation algorithm: lattice of size L with cells that are either occu-
pied or not occupied. Occupy a cell with probability p.

• For small p most cells are empty and for large p most cells are occupied. At the
critical probability (or percolation threshold) pc = 0.592 a percolating cluster
appears (cluster of cells that spans over two opposite sides of the box). pc is the
average probability at which a percolating cluster first occurs:

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Occupation Probability p

W
ra

p
p

in
g

 P
ro

b
a

b
ili

ty
 W

(p
)

Probability to find a spanning cluster

Critical prob. p
c
 = 0.592746

N = 10

N = 20

N = 30

N = 40

N = 50

N = 60

N = 70

N = 80

N = 90

N = 100

• P (p) is the fraction of sites which belong to the biggest cluster and is the order
parameter.

– Close to the percolation threshold we have P (p) ∝ (pc − p)β. This be-
haviour is called universal criticality.

Giuseppe Accaputo 3 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

Fractal dimension and sand-box method

Fractal dimension

• The underlying idea of the fractal dimension is to find a measure to describe how
well a given (fractal) object fills a certain space

• Self-similarity: an object is self-similar if it is built up of smaller copies of itself
(e.g. Sierpinski-triangle)

Sandbox method

• Sanbox method:

1. Place small box of size R in the center of the picture and count the number
N(R) of occupied sites in the box

2. Successively increase the box size R in small steps until the whole picture
is covered with our box

3. Plot N(R) vs. R in a log-log plot where the fractal dimension df is the
slope.

Giuseppe Accaputo 4 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

Hoshen-Kopelman algorithm

• We have clusters of different sizes s; the cluster size distribution ns is defined as

ns =
Ns

N

• Hoshen-Koppelman Algorithm: define matrix Nij with Nij = l ∈ {0, 1}, cluster
number k = 2 and array Mk (mass of cluster k). Comb through the lattice from
top-left to bottom-right.

1. Set k = 2,Mk = 1

2. For all entries of Nij do:

(a) If a site is occupied and top and left neighbors are empty, we have
found a new cluster. k = k + 1, Nij = k,Mk = 1

(b) If either the top or left site has value k0, we increase the value of Mk0

by one and set Nij = k0.

(c) If top and left site are occupied with k1 and k2 respectively (with
k1 6= k2), choose one of them (for example k1). Set Nij = k1,Mk1 =
Mk1 +Mk2 + 1,Mk2 = −k1. When encountering a negative value for
the mass, one can multiply it with −1 to recursively get the correct
cluster (recursion stops when Mk ≥ 0)

3. For k = 2 . . . kmax do:

(a) If Mk > 0 then n(Mk) = n(Mk) + 1, i.e. construct the histogram of
the differen cluster sizes

• np(s) = s−τR± [(p− pc)sσ], where R± are scaling functions, where the sub-
script ± stands for p > pc (+) and p < pc (−), respectively.

– A scaling function is a function f(x, y) of two variables that can be ex-
pressed as a function of one variable f(x′)

•

Giuseppe Accaputo 5 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

•

np(s) ∝


s−θ exp{as}, if p < pc

s−τ , if p = pc

exp{−bs1−1/d}, if p > pc

Finite size scaling

Correlation function c(r) and correlation length ξ

• The correlation function c(r) is a measure for the amount of order in a system.
It describes how microscopic variables are correlated over various distances.

• Let ρ(x) be the density of the object at point x. The correlation function of the
density at the origin and at a distance r is then

c(r) = 〈ρ(0) · ρ(r)〉

• Correlation length ξ: c(r) ∝ C + exp{−r/ξ}. It describes the typical length
scale over which the correlation function of a given system decays. For p < pc ξ
is proportional to the radius of a typical cluster.

• ξ has a singularity at the critical occupation probability pc: ξ ∝ |p− pc|−ν

• c(r) at pc: c(r) ∝ r−(d−2−ν)

Finite size effects and finite size scaling

• Finite size effects: we encounter problems when the system size L is smaller than
the correlation length ξ. instead of obtaining a singularity we obtain a maximum.

• Finite size scaling: consider the second moment χ as a function of p and L,
i.e. plot χ against the occupation probability p for several values of L we obtain
plots that differ around the critical point:

Giuseppe Accaputo 6 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

– Power law: χ ∝ |p− pc|−γ

– The second moment χ is a very strong indicator of pc as we can see a
very clear divergence around pc. We get a plot that makes pc much better
visible than plotting the probability of finding a spanning cluster for a given
occupation probability p

• χ was originally a function of two parameters p and L and now behaves as though
it was a one-parameter function:

χ(p, L) = Lγ/νNχ

[
(p− pc)L1/ν

]
⇐⇒ Nχ

[
(p− pc)L1/ν

]
= χ(p, L)L−γ/ν

where N is the so-called scaling function. Plot (p−pc)L1/ν against χ(p, L)L−γ/ν

and observe the data collapse; the slope of the line gives −γ. At pc we have
χmax(L) ∝ Lγ/ν

– Finite size scaling of χ: We can observe data collapse when plotting χL−γ/ν

against |p− pc|L1/ν . The straight lines have a slope of −γ:

Giuseppe Accaputo 7 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

• For the fraction of sites P we have P (p, L) = L−β/νNP [(p− pc)L1/ν]. At pc we
find that P ∝ L−β/ν and that the number of sites is also system size dependent,
i.e. M ∝ Ldf . Combine it to get M ∝ PLd ∝ L(−β/ν + d) ∝ Ldf =⇒ df =
d− β/ν

– χ ∝ |p− pc|−γ

– Order parameter P (p): fraction of sites in largest cluster

Integration with Monte Carlo

• Major advantages of Monte Carlo methods: error ∆ decreases with increasing

number of samples N as follows: ∆ ∝ 1√
N

and ∆ is not dependent on the

dimension.

•
∫ a

b

g(x)dx ≈ (b− a)

[
1

N

N∑
i=1

g(xi)

]
– Simple sampling: If we choose xi completely at random we get a very

good approximation. If g(x) is not smooth, e.g. it has a singularity we get
a rather bad approximation, but we get a good approximation if g(x) is
smooth.

Giuseppe Accaputo 8 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

– Importance sampling: Introduce a function p(x). Sampling points are now
distributed according to p(x). p(x) helps us to pick our sampling points xi
according to their importance (e.g. select more points close to singularity).

If
g(x)

p(x)
is smooth we get a very good approximation.

∗ If g(x) has a singularity at x̂, then define p(x) such that it covers the
singularity, i.e. use a Gaussian distribution with the peak of the curve
at at the singularity x̂ (σ = x̂)

Detailed balance and Metropolis algorithm

• Canonical Monte Carlo

– Probability (at thermal equilibrium) for a system to be in X is given by the

Boltzmann factor: Peq(X) =
1

ZT
exp{−E(X)/(kBT)}

– Ensemble average: 〈Q〉 =
∑
X

Q(X)Peq(X)

• Properties of the probability of a Markov chain:

– Ergodicity: ∀X, Y : W (X → Y) > 0 (each configuration is reachable)

– Normality:
∑
Y

W (X → Y) = 1

– Homogeneity:
∑
Y

pst(Y)W (Y → X) = pst(X) (the probability for a sys-

tem to be in X is simply a result of systems coming from other configura-
tions over to X)

• The Master equation:

dp(X, t)

dt
=
∑
Y

P (Y)W (Y → X)−
∑
Y

P (X)W (X → Y)

• Detailed balance:

– Consider the stationary state:
dp(X, t)

dt
(note: all Markov processes reach

a steady state). Since we want to model the thermal equilibrium we use the

Boltzmann distribution, i.e. Pst(X) = Peq(X). We get
∑
Y

Peq(Y)W (Y →

Giuseppe Accaputo 9 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

X) =
∑
Y

Peq(X)W (X → Y). The detailed balance condition Peq(Y)W (Y →

X) = Peq(X)W (X → Y) is a sufficient condition and states that the
steady state of the Markov process is the thermal equilibrium (we have
achieved this by using the Boltzmann distribution for p(X))

• Metropolis algorithm: A(X → Y) = min(1, exp{−∆E/(kBT)})

• Glauber dynamics: A(X → Y) =
exp{−∆E/(kBT)}

1 + exp{−∆E/(kBT)}

• Both Metropolis and Glauber fulfill detailed balance

Ising model

• The Ising model is a mathematical model of ferromagnetism in statistical me-
chanics

• Hamiltonian: H = E = −J
∑

j: nn of i

σiσj −H
∑
i

σi

• Monte Carlo of the Ising model:

1. Choose a random site i with spin σi

2. Calculate ∆E = E(Y)− E(X) = 2Jσihi

– hi =
∑

near. neighb. ofσi

σj is the local field at site i

3. If ∆E ≤ 0 then flip spin, i.e. σi → −σi
4. If ∆E > 0 flip spin with probability exp{−β∆E}

• Susceptibility χ =
M

H
where M is the magnetization and H is the magnetic field

strength. χ ∝ |T − Tc|−γ

• Spontaneous magnetization: M(T) = lim
H→0

〈
1

N

N∑
i=1

σi

〉
,M ∝ |T − Tc|β

Giuseppe Accaputo 10 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

–

Simulate random walk

• 1D random walk

– Number of visited sites Ncov ∝
√
t

∗ d = 1: Ncov ∝
√
t

∗ d = 2: Ncov ∝ log t

∗ d > 2: Ncov ∝ t

– Mean square distance r2 =
1

2
Dt

Euler method

• First-order ordinary differential equations (ODE):
dy

dt
= f(y, t), y(t0) = y0

• Euler recipe:

1. Take the initial value y(t0) = y0

2. Calculate
dy

dt
3. Advance linearly for ∆t with the derivative at the initial value as the slope:
y(t+ ∆t) = y(t) + ∆t · y′(t)

4. Take the point reached in the previous step as new initial value and repeat
steps 3-4

• We have the initial value problem
dy(t)

dt
= f(t, y(t)), y(t0) = y0. Taylor expan-

sion: y(t0 + ∆t) = y(t0) + ∆t · f(y0, t0) +O((∆t)2)

Giuseppe Accaputo 11 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

– One timestep (yn+1 = t0 + n · ∆t) in the Euler method corresponds to
yn+1 = yn + ∆t · f(yn, tn)

– The error for each time step is ∝ (∆t)2. Since we accumulate this error dur-
ing every time step, i.e. m = tend/∆t, the error is of order m ·O((∆t)2) =
tend/∆t ·O((∆t)2) = O(∆t) =⇒ the Euler method is globally of order 1

– Use small ∆t to minimize error, but a small ∆t is numerically very expensive
(i.e. resulting in many time steps and thus large number of iteration)

2nd order Runge-Kutta

• Runge-Kutta (RK) methods achieve the same accuracy as the Euler method for
much larger time steps. RK methods are numerically less expensive, yet more
complicated to implement

• RK methods are derived using a Taylor expansion for y(t+∆t) keeping all terms
up to order (∆t)q.

• 2nd order RK method: y(t+ ∆t) = y(t) +
(∆t)

1!

dy

dt
+

(∆t)2

2!

d2y

d2t
+O((∆t)3)

1. Perform Euler step of size
∆t

2
, starting at the initial value yi(t0):

yi(t+ 1/2∆t) = yi(t) + 1/2∆t · f(yi(t), t)

yi(t+ ∆t) = yi(t) + ∆t · f(yi(t+ 1/2∆t), t+ 1/2∆t) +O((∆t)3)

• 4th order RK method:

k1 = ∆t · f(yn, tn)

k2 = ∆t · f(yn + k1/2, tn + ∆t/2)

k3 = ∆t · f(yn + k2/2, tn + ∆t/2)

k4 = ∆t · f(yn + k3, tn + ∆t)

=⇒ yn+1 = yn + k1/6 + k2/3 + k3/3 + k4/6 +O((∆t)5)

2nd order predictor-corrector

• 2nd order predictor-corrector: y(t+ ∆t) ≈ y(t) + ∆t · f(y(t)) + f(y(t+ ∆t))

2
.

This is an implicit equation which cannot be solved directly (equation depends
on y(t+ ∆t). We make a prediction of y(t+ ∆t) by using the Taylor expansion

Giuseppe Accaputo 12 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

yp(t+ ∆t) = y(t) + ∆t · dy(t)

dt
+O((∆t)2). We now can compute yc(t+ ∆t) =

y(t) + ∆t · f(y(t)) + f(yp(t+ ∆t))

2
+ O((∆t)3). The corrected value yc can

itself be inserted into the corrector as the predicted value for a better result,
which can be don several times.

• 3rd order predictor-corrector: yp(t + ∆t) = y(t) +
∆t

1!

dy(t)

dt
+

(∆t)2

2!

d2y(t)

d2t
+

(∆t)3

3!

d3y(t)

d3t
+O((∆t)4). Now we use

(
dy

dt

)c
(t+ ∆t) = f(yp(t+ ∆t))

– The error is defined as δ =

(
dy

dt

)c
(t+ ∆t)−

(
dy

dt

)p
(t+ ∆t)

– To get a complete corrector we have to adapt the function itself, its first,
its second and its third derivative, too:

yc(t+ ∆t) = yp + c0δ(
d2y

d2t

)c
(t+ ∆t) =

(
d2y

d2t

)p
(t+ ∆t) + c2δ(

d3y

d3t

)c
(t+ ∆t) =

(
d2y

d2t

)p
(t+ ∆t) + c3δ

with the so-called Gear coefficients c0 = 3/8, c2 = 3/4, c3 = 1/6. The
Gear coefficients can be read from a precalculated table.

∗ c1 = 1, since the first derivative of the corrector is not listed, i.e. is 0

Jacobi und Gauss-Seidel relaxation

Jacobi relaxation

• We want to solve A~Φ = ~b

• Decompose A = D + U + L where D is the diagonal matrix of A, L the lower
triangular matrix of A (without the diagonal) and U is the upper triangular
matrix (without the diagonal)

• Jacobi method: ~Φ(t+ 1) = D−1(~b− (U + L)~Φ(t))

– Not very exact, and the exact solution is only reached if t→∞

Giuseppe Accaputo 13 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

– Define required precision ε and stop when δ′n =
‖~Φ(t+ 1)− ~Φ(t)‖

‖~Φ(t)‖
≤ ε

– Error is defined as ~δ(t + 1) = −D−1(U + L)~δ(t) = −Λ~δ(t) with Λ being
the error evolution operator

∗ For k time steps we may write the approx. solution as the sum of the
exact solution with an error: ~Φk ≈ ~Φ∗+λn ·~c, with λ being the largest
eigenvalue of Λ

Gauss-Seidel relaxation

• Jacobi method computes the new values based on the old ones

• Gauss-Seidel method will simply calculate the value of the function at a given
site using all adjacent sites (does not care if sites are updated or not)

• Decompose matrix A in the same way as before, i.e. A = D + U + L. Now
combine elements in a different way: ~Φ(t+ 1) = (D + U)−1(~b− L~Φ(t))

– The error evolution operator Λ for the Gauss-Seidel relaxation is defined as
Λ = (D + U)−1L

∗ (D+U)−1 makes the largest eigenvalue λmax of Λ smaller, consequently
decreasing the error at each time step and increasing the convergence
speed of the method

– Stopping criteria (using precision ε): δn =
‖~Φ(t+ 1)− ~Φ(t)‖

(1− λ)‖~Φ(t)‖
≤ ε with λ

being the largest eigenvalue of Λ

Gradient methods

• Use a functional which measures the error of a solution of the system of equa-
tions. If a system of equations has one unique solution, the functional is a
paraboloid with its minimum at the exact solution.

• Define functional by residual ~r (estimation of the error ~δ): ~r = A~δ = b− A~Φ

– If the residual is small, then the error is also going to be small

– We minimize the functional J = ~rTA−1~r which is 0 if ~Φ = ~Φ∗ and > 0
otherwise.

– ~Φi is the i-th approximation of the solution and let us define ~Φ = ~Φi+αi~di,
where ~di is the direction of the step and αi the step length

Giuseppe Accaputo 14 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

∗ If we minimize the functional J along the lines given by ~d we will find
the best value for α (denoted as αbest) at which J is minimal, i.e.

∂J

∂α
= 2~di(αbest,iA~di − ~r)

!
= 0⇐⇒ αbest,i =

~dTi ~ri
~dTi A

~di
∗ αbest,i has to be calculated for each step.

Steepest descent

• Analogy of the steepest descent method: trying to get down to the valley from
the mountain top the quickest way possible. To do this, chose the steepest
possible direction. It’s not the most comfortable way, but it gets the job done.

• For the steepest descent method choose ~di = ~ri

• Disadvantage: it does not take the optimal direction if the functional is not a
regular paraboloid:

• Steepest descent algorithm:

1. Start with ~Φi and choose ~di = ~ri = ~b− A~Φi

2. Evaluate ~ui = A~ri and store ~ri. Calculate the length of the step: αi =
~r2i
~ri~ui

3. Advance in the direction of ~di for the length αi: ~Φi+1 = ~Φi + αi~ri

4. Update the residual for the next step: ~ri+1 = ~ri − αi~ui
5. Repeat steps until the residual is sufficiently small

Giuseppe Accaputo 15 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

• Most costly part of the algorithm is the calculation of ~u (O(N2) if A is a dense
matrix, O(N) if A is a sparse matrix where N is the number of equations to be
solved)

Conjugate Gradient

• The conjugate gradient method fixes the problem of having a functional that is
a irregular paraboloid

• Conjugate gradient takes the functional and deforms it in such a way that it
looks like a regular paraboloid, and only then it carries out the steepest descent
method. We get rid of irregular paraboloids in this way.

• New direction is conjugate to all previous ones by using Gram-Schmidt orthogo-

nalization process: ~di = ~ri −
i−1∑
j=1

~dTj A~ri
~dTj A

~dj

~dj. Now all directions ~di are conjugate

to each other, i.e. ~dTi A
~dj = δij with δij = 0 if i 6= j, else δij = 1

• Important note: Conjugate gradient method and gradient methods in general
are only a valuable option for positive-definite and symmetric matrices A, since
this implies that the eigenvalues of A will be real, i.e. λi ∈ R

• Conjugate gradient algorithm:

1. Compute first residual ~r1 by using some vector ~Φ1. Then use the residual
as the first direction, i.e. ~d1 = ~r1 = ~b− A~Φ1

2. Compute the temporary scalar c = (~dTi A
~di)
−1 (do not inverse A; first

calculate the scalar product, resulting in the inversion of a scalar value)

3. Compute the length of the step: αi = c~rTi
~di

4. Carry out the step: ~Φi+1 = ~Φi + αi~di

– If the residual is sufficiently small, e.g. ~rTi ~ri < ε we can stop

5. Update the residula for the error estimation and for the next step: ~ri+1 =
~b− A~Φi+1

6. Compute the direction of the next step: ~di+1 = ~ri+1 − (c~rTi+1A
~di)~di

Startegy of finite elements, finite volumes and spec-
tral methods

• Problem of finite differences: it is not possible to take region-dependent mesh
sizes, since the regular mesh cannot be adapted to the problem.

Giuseppe Accaputo 16 www.accaputo.ch

www.accaputo.ch

Introduction to Computational Physics (Spring Semester 2013 · ETH Zürich)

• With finite element methods, PDEs can be solved for irregular geometries, inho-
mogeneous fields (e.g. with moving boundaries) and non-linear PDEs. The mesh
can be adapted during the computation of the solution to speed up convergence.

– Convergence depends on the ratio of gradient to mesh size, so it’s preferable
to refine the mesh locally in regions of big gradients

• Poisson equation:
d2Φ

d2x
(x) = −4πρ(x). Try to expand the field Φ in terms of

localized basis functions ui(x): Φ(x) =
∞∑
i=1

aiui(x) ≈ ΦN(x) =
N∑
i=1

aiui(x)

Giuseppe Accaputo 17 www.accaputo.ch

www.accaputo.ch

