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Disclaimer
This is a summary of the Advanced Topics in Computational Statistics lecture [10] taught
by Prof. Maathius and Prof. Mächler during the autumn semester 2015 at the ETH Zürich
and was written by me as a preparation for the oral exam. The equations displayed in
boxes in this summary have been presented during the lecture; equations taken from
other sources are appropriately referenced in the text.

Lecture 1 (Week 38)
Bayes Risk and Bayes Estimator [7]
• Let Y be a categorical variable and Y be the set of possible classes, with Y ∈ Y;

an estimate Ŷ will also assume values in Y. Further, let L(k, l) be a loss function
which characterizes the price to pay for classifying an observation belonging to
class Yk as Yl. The expected prediction error EPE is

EPE = E[L(Y, Ŷ (X))] (1)

By minimizing the EPE pointwise, we get

Ŷ (x) = argminl∈Y

K∑
k=1

L(Yk, l)P[Yk|X = x] (2)
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Using a 0 − 1 loss function, where all the misclassifications are charged a single
unit, Eq. (2) simplifies to

Ŷ (x) = argminl∈Y [1− P[l|X = x]] (3)

or simply

Ŷ (x) = Yk if P[Yk|X = x] = max
l∈Y

P[l|X = x] (4)

Eq. (4) is known as the Bayes classifier, and says that we classify to the most prob-
able class, using the conditional distribution P[Y |X]. The error rate of the Bayes
classifier is called the Bayes rate

Definition of k-nearest neighbours (k-NN) [5]
• Given a positive integer k and a test observation x, the k-NN classifier first identi-

fies the k points in the training data that are closest to x, represented by Nk. Let
Y be a quantitive output (regression), which we want to accurately approximate
through the estimation Ŷ . The k-nearest neighbor fit for Ŷ is then defined as

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi (5)

– If Ŷ should accurately approximate a qualitative output Y = 0, . . . , l − 1
(classification), then by using k-NN Ŷ can be calculated with

Ŷ =
1

k

∑
i∈Nk

I(yi = j) (6)

where j ∈ {0, . . . , l−1} is the class label and I(yi = j) is an indicator function,
i.e.,

I(yi = j) =

{
1 if yi = j,

0 else.
(7)

• k-NN does not appear to rely on any assumptions about the underlying data, and
can adapt to any situation. However, any particular subregion of the decision
boundary depends on a handful of input points and their particular position, and
is thus wiggly and unstable, resulting in high variance and low bias

– The linear decision boundary from least squares is very smooth, and apper-
ently stable to fit, but does rely heavily on the assumption that a linear deci-
sion boundary is appropriate, thus resulting in low variance and high bias
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Lecture 2 (Week 39)
Bias-Variance Tradeoff [7]
• The expected test MSE is defined as

E[Y − Ŷ (X)]2 = Var(Ŷ (X)) + [Bias(Ŷ (X))]2 + Var(ε) , (8)

where ε are the error terms. In order to minimize the expected test MSE in Eq.
(8), we need to select a statistical learning method that simultaneously achieves
low variance and low bias

– Variance refers to the amount by which Ŷ would change if we estimated it
using a different training data set. Ideally, the estimate for Y should not vary
too much between training sets, meaning if a method has high variance then
small changes in the training data set can result in large changes in Ŷ

– Bias refers to the error that is introduced by approximating a real-life problem
— which may be extremely complicated — by a much simpler model

∗ For example, linear regression assumes that there is a linear relationship
between Y and X1, X2, . . . , Xp, but it is unlikely that any real-life prob-
lem truly has such a simple linear relationship, and so performing linear
regression will undoubtedly result in some bias in the estimate of Y .

• For k-NN, choosing the optimal k can be achieved by using cross validation

The Different Types of Errors
• We have a target variable Y , a vector of inputs X, and a prediction model f̂(X)

that has been estimated from a training set T . The loss function for measuring
errors between Y and f̂(X) is denoted by L(Y, f̂(X))

• The training error is the average loss over the training samples, i.e.,

err =
1

n

n∑
i=1

L(Yi, Ŷ ) , (9)

where L(·, ·) is the loss function and Yi is the true class label and Ŷ the predicted
class label.

– For 1-NN, err = 0, since the nearest neighbor of Xi is Xi itself, thus giving
Yi = Ŷi

– For k-NN with k > 1, err goes up given a low model complexity. err decreases
in general if one increases the model complexity
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• The test error, also referred to as generalization error, is the prediction error over
an independent test sample drawn from the distribution of (X,Y ) and is given by

ErrT = E[L(Y, f̂(X))|T ] , (10)

where the training data set T is fixed, and test error refers to the error for this
specific training set

• The expected test/prediction error is defined as

Err = E[Errτ ] , (11)

where Errτ is defined in Eq. (10)

K-Fold Cross-Validation [5]
• K-fold cross-validation (CV) uses part of the available data to fit the model, and a

different part to test it

• K-fold CV works as follows:

1. Split the data into K roughly equal-sized parts

2. For the kth part, fit the model to the other K − 1 parts of the data

3. Calculate the prediction error of the fitted model when predicting th ekth part
of the data

4. Do steps (1) to (3) for k = 1, 2, . . . ,K and combine the K estimates of pre-
diction error

• The cross-validation estimate of the prediction error is

CV(f̂) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi)) , (12)

where κ : {1, . . . , N} → {1, . . . ,K} is an indexing function that indicates the
partition to which observation i is allocated by the randomization and f̂−k(x) the
fitted function, computed with the kth part of the data removed.

• The expected test error Err can be approximated using cross-validation.

– Often K = 5, 10 is used.

Curse of Dimensionality
• With a large data set, k-NN seems a good method, as we can always find k-nearest

neighbour points close to x. This is true for small dimensions. In higher dimensions
we run into the curse of dimensionality, which has the following implications:
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1. Consider the nearest-neighbor procedure for inputs uniformly distributed in
a p-dimensional hypercube. Suppose we want to capture a fraction r of the
observations by a smaller hypercube. Since this corresponds to a fraction r of
the unit hypercube, the edge length of the smaller hypercube will be r1/p. For
example, to capture 1% of the data in dimension p = 10, you need to capture
0.011/10 = 0.63 = 63% of each axis / input variable.

2. Another consequence of the sparse sampling in high dimensions is that all
sample points are close to an edge of the sample. Consider N data points
uniformly distributed in a p-dimensional unit ball centered at the origin. The
median from the origin to the closest data point is given by the expression

d(p,N) =

(
1− 11/N

2

)1/p

(13)

e.g., with N = 500 and p = 10 Eq. (13) evaluates to approximately 0.52,
resulting in many points being closer to the boundary than to any other data
point

3. Another manifestation of the curse is that the sampling density is proportional
to N1/p.This means that if N1 = 100 represents a dense sample for a single
input problem, then N10 = 10010 is the sample size required for the same
sampling density with 10 inputs, meaning that in high dimensions all feasible
training samples sparsely populate the input space.

Lecture 3 (Week 40)
Weighted k-Nearest Neighbours
• In plain k-NN, all neighbours are weighted equally, independent from the distance

• Idea: data points that are closer to the target point x should get higher weights

Issues with k-NN

• Not invariant to monotone transormations of the variables

• Not easy to chose k (tuning parameter)

• Curse of dimensionality

Layered Nearest Neighbours [1]
• Definition: An observation Xi = (xi1, . . . , xip) ∈ Rp is a layered nearest neighbour

(LNN) of a target point x if the hyperrectangle defined by x and Xi does not
contain any other data points
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Estimation

• Assume that we are given a sequence (X1, Y ), . . . , (Xn, Yn) of i.i.d. Rp ×R-valued
random variables. Further, let Ln(x) be the set of LNNs of x with Ln(x) = |Ln(x)|
being the number of LNNs of x. Then, the regression function r(x) = E[Y |X = x]
may be estimated by

rn(x) =
1

Ln(x)

∑
Xi∈Ln(x)

Yi (14)

– Note: Ln(x) ≥ 1, so the division makes sense

Classification

• For classification use

argmaxl∈{0,...,k−1}
1

Ln(x)

∑
Xi∈Ln(x)

I(Yi = l) (15)

where I is the indicator function defined in Eq. (7)

Properties of Ln(x)

• Ln(x)→∞ as n→∞
– For k-NN we choose k →∞ as n→∞, but k/n→ 0 as n→∞

• E[Ln(x)] ≈ 2p(logn)p−1

(p−1)! , i.e., Ln(x) goes slower to infinity as n

Why Is LNN Interesting?

1. We do not need a tuning parameter

2. It is scale-invariant, which is clearly a desirable feature when the components of
the vector represent physically different quantities

3. There is a close relation with random forests; the latter suffers less from the curse
of dimensionality

Random Forests [1]
1. Take the data (X1, Y ), . . . , (Xn, Yn) and partition Rd randomly into pure rectan-

gles, i.e., rectangles that each contain one data point

• If A(X) is the rectangle to which X belongs, then X votes “Yi”, where Xi is
the unique data point in A(X). This means that each voting Xi is a LNN of X
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2. Repeat step 1) many times, resulting in a random forest. Since each voting Xi is a
LNN of X, it means that a random forests leads to a weighted LNN estimate

• More formally, assume that θ1, . . . , θm are i.i.d. draws of some randomising
variable θ, independent of the sample. A random forest is a collection of
m randomised trees t1(x, θ1,Dn), . . . , tm(x, θm,Dn) which is constructed by
repeatedly bagging, i.e., selecting a random sample with replacement of the
training set and fit trees tj to thesem samples, withDn = {X1, . . . ,Xn} being
a sample of i.i.d. random vectors in Rd, d ≥ 2

– Regression:

rn =
1

m

m∑
j=1

tj(x, θj ,Dn) (16)

– Classification: Majority vote among tj(x, θj ,Dn), with j = 1, . . . ,m for
classification

Lecture 4 (Week 41)
• Assume we have points X1, . . . ,Xn ∈ Rp with p very large. Storing and computing

is rather expensive

• Idea: Consider a mapping

Φ : Rp → Rm , m ≤ p (17)

such that important properties of the points X1, . . . ,Xn are preserved in Φ(X1), . . . ,Φ(Xn)

– For example, for k-NN methods it is important to preserve pairwise distances

• Definition: Given a tolerance parameter δ ∈ (0, 1), a dimension reduction mapping
Φ is called δ-faithful if for all j, k ∈ {1, . . . , n}

(1− δ) ≤ ‖Φ(Xj)− Φ(Xk)‖
‖Xj −Xk‖

≤ (1 + δ) (18)

– Multidimensional scaling (MDS) and principle component analysis (PCA) are
two linear mappings that generate faithful low dimensional representations

Johnson-Lindenstrauss Lemma
• Assume the random linear map

Φ(x) =
S · x√
m

(19)

is given, where S ∈ Rm×p is the standard Gaussian matrix with entries i.i.d. N (0, 1)
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• Given a projection dimension

m >
32

δ2
log n (20)

the random linear map in Eq. (19) is δ-faithful with probability

P[δ-faithful] ≥ 1− exp{−mδ2/16} (21)

Lecture 5 (Week 42)
The Expectation-Maximization (EM) Algorithm
• The likelihood function L(a) is the probability for the occurence of a sample con-

figuration x1, . . . , xn given that the probability density f(x; a) with parameter a
known,

L(a) = f(x1; a) · · · f(xn; a) (22)

• The EM algorithm is a very general iterative algorithm for maximum likelihood
estimation in incomplete data-problems

ien

Mixture of Two Univariate Gaussians
• If the histogram of data shows bi-modality, i.e., there seems to be two separate

underlying regimes, then it is advisable to model the data Y as a mixture of two
normal distributions, since a single Gaussian distribution would not be appropriate

• Model Y as a mixture of two normal distributions:

U ∼ N (µ1, σ
2
1)

V ∼ N (µ2, σ
2
2)

Z ∼ Bernoulli(π)

Y = (1− Z) · U + Z · V

(23)

– The density of Y is

fθ(y) = (1− π) gθ1(y) + π gθ2(y) , (24)

where gθj is the normal density, π ∈ [0, 1], θj = (µj , σ
2
j ) and θ = (π, θ1, θ2)

– Z ∈ 0, 1 with probability π, i.e, Pr(Z = 1) = π
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∗ The θ in fθ(y) describes the parameters of the density family used; in
this case, the density family is the normal distribution and the density
function fθ is parameterized by θ = (π, θ1, θ2)

• The log-likelihood is

l(θ; y1, . . . , yn) =

n∑
i=1

log((1− π))gθ1(yi) + πgθ2(yi) (25)

– For σi → 0 and µj = yi for some i’s,

gθj (y) =
1√

2πσj
exp{−1

2

(
yi − µj
σj

)2

} (26)

tends to go to∞, meaning that the maximum likelihood estimate only exists
when σj > 0

Working with latent Zi
• If Zi = 1, then Yi comes from model 2, i.e. V ∼ N θ2, otherwise it comes from

model 1, i.e., U ∼ N θ1 (see Eq. (23))

• The log-likelihood in this case is given by

lc(θ; y1, . . . , yn; z1, . . . , zn) =
N∑
i=1

[(1− zi) log gθ1(yi) + zi log gθ2(yi)]

+

N∑
i=1

[(1− zi) log(1− π) + zi log π]

(27)

– The joint density f(y, z) is given by

[(1− π)gθ1(y)]1−z · [π gθ2(y)]z (28)

and can be derived using the fact that f(y, z) ∝ f(y|z) · f(z) with

f(y|z) = gθ1(y)1−z gθ2(y)z (29)

f(z) = (1− π)1−z πz (30)

• Maximization can happen termwise:
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1. For θ1 (model 1, for which zi = 0), minimize∑
i:zi=0

− log gθi(yi) (31)

2. Same as 1) for θ2 (with zi = 1 respectively)

3. π can be determined by maximizing the 3rd and 4th term in lc

Defining a Value for the Zi’s

E-Step: Since we do not know the values of the zi’s, the idea is to replace them by
their expected values. Given the parameters θ and the observed data Yi, we compute

γi = E[Zi|θ;Y1, . . . , Yn]

= Pr[Zi = 1|θ;Yi]

=
fθ(Yi|Zi = 1) · Pr[Zi = 1]

fθ(Yi|Zi = 0) · Pr[Zi = 0] + fθ(Yi|Zi = 1) · Pr[Zi = 1]

=
gθ1(Yi) · π

gθ1(Yi) · (1− π) + gθ2(Yi) · π

(32)

• Setting Zi to its expected value γi is called a soft assignment

The EM Algorithm for the Two Component Mixture

1. Take initial guesses for the parameters µ̂1, σ̂
2
1, µ̂2, σ̂

2
2, π̂

• Construct the initial guess for µ̂1, µ̂2 by simply choosing two of the yi at ran-
dom

• Set both σ̂2
1, σ̂

2
2 to the overall sample variance, i.e.,

σ̂2
1 = σ̂2

2 =
N∑
i=1

(yi − yi)2/N (33)

• Set the starting mixing proportion to π̂ = 0.5

2. Expectation Step: compute the responsabilities

γi =
gθ1(Yi) · π

gθ1(Yi) · (1− π) + gθ2(Yi) · π
, i = 1, 2, . . . , N

3. Maximation Step: compute the weighted means and variances:

µ̂1 =

∑N
i=1(1− γ̂i)yi∑N
i=1(1− γ̂i)

, σ̂2
1 =

∑N
i=1(1− γ̂i)(yi − µ̂1)2∑N

i=1(1− γ̂i)

µ̂2 =

∑N
i=1 γ̂iyi∑N
i=1 γ̂i

, σ̂2
2 =

∑N
i=1 γ̂i(yi − µ̂1)2∑N
i=1(1− γ̂i)
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The EM Algorithm for the k Component Mixture
• Yi ∈ Rp instead of being one-dimensional

• Mixture of k components instead of just 2

• The density fθ(y) is now defined as

fθ(y) =

k∑
j=1

πjgj(y; θ) , (34)

with θj = (µµµj ,ΣΣΣj), j = 1, . . . , k and θ = (π1, . . . , πk;µµµ1, . . . ,µµµk;ΣΣΣ1, . . . ,ΣΣΣk), ΣΣΣj

being the p× p positive-definite covariance matrix

• The indicator matrix of latent variables Z is introduced, with Zij ∈ {0, 1} for an
observation i ∈ {1, . . . , n} and component j ∈ {1, . . . , k} with the meaning that
Zij = 1 if the observation i is in group j

• The augmented data is given by (Yi,Zi) ∈ Rp × {0, 1}k

• The complete likelihood is defined as

Lc(θ;Y1, . . . ,Yn; z1, . . . , zn) =
n∏
i=1

k∏
j=1

[πj gθj (Yi)]
Zij (35)

• The responsability γij is given by

γij =
πj · gθj (Yi)∑k
r=1 πr · gθr(Yi)

(36)

Lecture 6 (Week 43)
Intro to Missing Data [9]
• Y = (yij) is the (n ×K) rectangular data set without missing values, with the ith

row yi = (yi1, . . . , yiK) where yij is the value of the variable Yj for subject i

• With missing data, M = (Mij) is the missing-data indicator matrix, such that
Mij = 1 if yij is missing and Mij = 0 if yij is present

– Y = (Yobs, Ymis)

• Data is called missing completely at random (MCAR) if

f(M |Y, φ) = f(M |φ) ∀Y, φ , (37)

i.e., missingness does not depend on the values of the data Y (missing or observed)
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– The probability of being missing is the same for all cases

– Example: Take a random sample of a population, where each member has
the same chance of being included in the sample. The (unobserved) data of
members in the population that were not included in the sample are MCAR

• Data is called missing at random (MAR) if

f(M |Y, φ) = f(M |Yobs, φ) ∀Ymis, φ , (38)

i.e., missingnes depends only on the components Yobs of Y that are observed, and
not on the components that are missing

– The probability of being missing is the same only within groups defined by
the observed data

– Example: We take a sample from a population, where the probability to be
included depends on some known property

• If neither MCAR nor MAR holds, then we speak of missing not at random (MNAR)

– MNAR means that the probability of being missing varies for reasons that are
unknown to us, i.e., it could depend on the value of the missing data itself

The EM Algorithm (DLR77 Notation [3])
• Two sample spaces exist:

1. Y, the sample space of observed (incomplete) data y

2. X , the sample space of the unobserved (complete) data x

• A many-to-one mapping from X to Y exists

• x may only be observed indirectly through y, i.e.,

x→ y(x) (39)

– It follows that x ∈ X (y), where X (y) is determined by the equation y = y(x)
and y is the observed data

• The existance of a family of sampling densities f(x|θ), for the complete data, and
g(y|θ) for the incomplete data is assumed

• Both density are related through

g(y|θ) =

∫
X (y)

f(w|θ)dx (40)

– The incomplete density g(·) is obtained from the complete density f(θ) by
integrating out the unobserved data x over its sample space X (y)
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– f(·|θ) is the joint density of the observable and unobservable data and g(·|θ)
the corresponding marginal density of the observable data

– For a given incomplete data specification g(·|θ), many possible complete data
specifications f(·|θ) may be defined

• Define

L(ΦΦΦ) = log g(y|ΦΦΦ) (41)

• Further, define k(x|y,ΦΦΦ) = f(x|ΦΦΦ)/g(y|ΦΦΦ) such that L can be rewritten to

L(ΦΦΦ) = log f(x|ΦΦΦ)− log k(x|y,ΦΦΦ) (42)

• Define the complete log likelihood function as

Q(ΦΦΦ′|ΦΦΦ) = E(log f(x|ΦΦΦ′)|y,ΦΦΦ) , (43)

where f(x|ΦΦΦ′) is the likelihood function (or family of sampling densities) defined
as

f(x|ΦΦΦ′) =

N∏
i=1

f(xi|ΦΦΦ′) (44)

with xi being the ith column of the complete data matrix x

– ΦΦΦ is a provisional guess for the parameter vector ΦΦΦ′

Algorithm

E-Step: Calculate the conditional expectation of the complete log likelihood given the
observations y and the current guess of the parameter vector ΦΦΦ′, i.e., Q(ΦΦΦ′|ΦΦΦ)

M-Step: Choose ΦΦΦ as the value of ΦΦΦ′ which maximizes Q(ΦΦΦ′|ΦΦΦ), i.e.,

ΦΦΦ = max
ΦΦΦ′

Q(ΦΦΦ′|ΦΦΦ) (45)

General Properties of the EM Algorithm

• Define for convenience

H(ΦΦΦ′|ΦΦΦ) = E(log k(x|y,ΦΦΦ′)|y,ΦΦΦ) (46)

• Rewrite Q as

Q(ΦΦΦ′|ΦΦΦ) = L(ΦΦΦ′) +H(ΦΦΦ′|ΦΦΦ) (47)
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• The term “iterative algorithm” means a rule applicable to any starting point, i.e., a
mapping ΦΦΦ→M(ΦΦΦ) from Ω to Ω such that each step ΦΦΦ(p) → ΦΦΦ(p+1) is defined by

ΦΦΦ(p+1) = M(ΦΦΦ(p)) (48)

– An iterative algorithm with mapping M(ΦΦΦ) is a generalized EM (GEM) algo-
rithm if

Q(M(ΦΦΦ)|ΦΦΦ) ≥ Q(ΦΦΦ|ΦΦΦ) ∀ΦΦΦ ∈ Ω (49)

Theorem 1: For every GEM algorithm

L(M(ΦΦΦ)) ≥ L(ΦΦΦ) ∀ΦΦΦ ∈ Ω , (50)

where equality holds if and only if both

Q(M(ΦΦΦ)|ΦΦΦ) = Q(ΦΦΦ|ΦΦΦ) (51)

and

k(x|y,M(ΦΦΦ)) = k(x|y,ΦΦΦ) (52)

almost everywhere.

Proof:

L(M(ΦΦΦ))− L(ΦΦΦ) = [Q(M(ΦΦΦ)|ΦΦΦ)−Q(ΦΦΦ|ΦΦΦ)]︸ ︷︷ ︸
≥0, because Eq. (49)

+ [H(ΦΦΦ|ΦΦΦ)−H(M(ΦΦΦ)|ΦΦΦ)]︸ ︷︷ ︸
≥0, and = 0 iff k(x|y,M(ΦΦΦ))=k(x|y,ΦΦΦ)

Lecture 7 (Week 44)
Listwise Deletion (Complete Case Analysis) [15]
• With listwise deletion, an entire record is excluded from analysis if any single value

is missing

– Example: See Table (1)

• Advantages under MCAR:

1. Produces unbiased estimates of means, variances and regression weights

2. Produces standard errors and significance levels that are correct for the re-
duced subset of data

• Disadvantages if not MCAR:

1. Can severely bias estimates of means, regression coefficients and correlations
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Table 1: Sample data with missing values. With listwise deletion, rows 1 and 4 would
be excluded from the analysis

Subject Age Gender
1 28 NA
2 30 m
3 26 f
4 NA f

Pairwise Deletion (Available-Case Analysis) [15]
• Mean of each variable Xi is based on all cases with observed data on Xi

• For the correlation and covariance, all data are taken on which both Xi and Xj

(i 6= j) have non-missing scores

• Advantages under MCAR:

1. The method produces consistent estimates of mean, correlations and covari-
ances

• Disadvantages if not MCAR:

1. Estimates can be biased

2. The correlation matrix may not be positive-definite, which is a requirement
for most multivariate procedures

– Among other things, a positive-definite matrix has positive eigenvalues
and a unique Cholesky decomposition

3. Correlations outside of the range [−1, 1] can occur, since the method works
with different subsets for the covariances and variances

4. Due to the different subset sizes, it is not clear which sample size should be
used for calculating standard errors

Mean Imputation [15]
• A quick fix for the missing data is to replace them by the mean

• Disadvantages:

1. Underestimates the variance

2. Disturbs the relation between variables

3. Biases almost any estimate other than the mean

4. If the data are not MCAR, it biases the estimate of the mean
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Regression Imputation [15]
• First build a model from the observed data

• Next, predictions for the incomplete cases are calculated under the fitted model,
and serve as replacements for the missing data. In other words, RI performs

ẏ = β̂0 +Xmisβ̂1 , (53)

where ẏ contains the imputed values in y and β̂0, β̂1 are least squares estimates
calculated from the observed data

• Advantages under MCAR:

1. Yields unbiased estimates of the means and the regression weights if the ex-
planatory variables are complete

Stochastic Regression Imputation [15]
• SRI is a refinement of regression imputation that adds noise to the predictions. In

other words, SRI performs

ẏ = β̂0 +Xmisβ̂1 + ε̇ , (54)

where ẏ contains the imputed values in y, β̂0, β̂1 are least squares estimates calcu-
lated from the observed data and ε̇ is randomly drawn from the normal distribution
as ε̇ ∼ N (0, σ̂2)

• Disadvantages:

– In the example shown in the book, the method produces negative values for
the Ozone concentrations, which of course are implausible

Last Observation Carried Forward (LOCF) and Baseline Observation
Carried Forward (BOCF) [15]
• The idea is to take the last observed value as a replacement for the missing data

Indicator Method [15]
• The indicator method replaces each missing value by a zero and extends the re-

gression model by the response indicator

– The procedure is applied to each incomplete variable

– The user analyzes the extended model

• Disadvantages:
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1. The method can yield severly biased regression estimates, even under MCAR
and for low amounts of missing data

2. The conditions under which the indicator method works are often difficult to
achieve in practice

3. The method also does not allow for missing data in the outcomes

Lecture 8 (Week 45)
MCAR and MAR [9]
• Rubin’s theory formalized the concept of analyzing data with missing values by

treating the missing-data indicators as random variables and assigning them a
distribution

• M is the missing-data indicator, with

Mij =

{
1 yij missing
0 yij not missing

(55)

– The probability that M takes a value m = (m1, . . . ,mn) given that Y takes
the value y = (y1, . . . , yn) is f(M |Y, θ)

– f(M |Y, θ) corresponds to the process that causes missing data

• R is the response indicator, with R = 1−M and

Rij =

{
1 yij observed
0 yij not observed

(56)

– M is the missing-data indicator

• In general, we would not expect the distribution of R to be unrelated to Y , so a
probability model for R is proposed. The distribution of R may depend on Y =
(Yobs, Ymis) and this relation is described by the missing data model Pr(R|Yobs, Ymis, ψ),
where ψ contains the parameters for the missing data model

• The data are said to be MCAR if

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|ψ) (57)

so the probability of being missing depends only on some parameters ψ, the overall
probability of being missing

• The data are said to be MAR if

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|Yobs, ψ) (58)

so the missingness probability may depend on observed information, including any
design factors
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Ignorability [9]
• The assumption of ignorability is essentially the belief on the part of the user that

the available data are sufficient to correct for the effects of the missing data

• The missing data mechanism is ignorable for likelihood inference if:

1. The missing data are MAR (see Eq. (58)), which implies that the distribution
of the missing data mechanism does not depend on the missing data Ymis

2. The parameters θ of the data model (for the full data Y ) and the parameters
ψ of the missingness mechanism (that relates Y to R) are distinct

– The full model specifies the joint distribution of M and Y as

f(Y,M |θ, ψ) = f(Y |θ) f(M |Y, ψ), (θ, ψ) ∈ Ωθ,ψ (59)

where Ωθ,ψ is the parameter space of (θ, ψ)

Implications of Ignorability [15]
• In imputation, we want to draw synthetic observations from the posterior distri-

bution of the missing data, given the observed data and given the process that
generated the missing data; the distribution is denoted as f(Ymis|Yobs, R)

• If the nonresponse is ignorable, then this distribution does not depend on R, i.e.,

f(Ymis|Yobs, R) = f(Ymis|Yobs) (60)

which implies

f(Ymis|Yobs, R = 1) = f(Ymis|Yobs, R = 0) (61)

so the distribution of the data Y is the same in the response and nonresponse
groups. Imputation thus makes sense.

– It follows that if the missing data model is ignorable we can model the poste-
rior distribution f(Y |Yobs, R = 1) from the observed data, and use this model
to create imputations for the missing data

– Under MNAR, if the nonresponse is nonignorable, we have

f(Ymis|Yobs, R = 1) 6= f(Ymis|Yobs, R = 0) (62)

Multiple Imputation [15]
• Let Q be a scientific estimand, e.g., the population mean

– We can only calculate Q if the population data are fully known
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• Goal of multiple imputation is to find an estimate Q̂ that is unbiased and confi-
dence valid

– Unbiasedness means that the average Q̂ over all possible samples Y from the
population is equal to Q, i.e.,

E[Q̂|Y ] = Q (63)

– Let U be the estimated variance-covariance matrix of Q̂; then, this estimate
is confidence valid if

E[U |Y ] ≥ Var(Q̂|Y ) , (64)

where Var(Q̂|Y ) is the variance caused by the sampling process

Sources of Variation [15]

• The actual value of Q is unknown if some of the population data are unknown

• The possible values of Q given our knowledge of the data Yobs are captured by the
posterior distribution f(Q|Yobs)

• Combining the results of m repeated imputations results in the combined estimate
defined as

Q =
1

m

m∑
l=1

Q̂l , (65)

where Q̂l is the estimate of the lth repeated imputation

• The posterior variance of f(Q|Yobs) is given as

Var(Q|Yobs) =

within-variance︷ ︸︸ ︷
E[Var(Q|Yobs, Ymis)|Yobs]

+ Var(E[Q|Yobs, Ymis]|Yobs)︸ ︷︷ ︸
between-variance

(66)

(67)

– Within-variance: average of the repeated complete data posterior variances
of Q

– Between-variance: variance between the complete data posterior means of Q

• The posterior variance Var(Q|Yobs) can be defined as

T = U +B +B/m , (68)
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where

B =
1

m

m∑
l=1

(Q̂l −Q)(Q̂l −Q)′ (69)

is the standard unbiased estimate of the variance between the m complete data
estimates and

U =
1

m

m∑
l=1

U l (70)

is the average of the complete-data variance where the term U l is the variance-
covariance matrix of Q̂l obtained from the lth imputation

– The term B/m is the extra simulation variance caused by the fact that Q itself
is estimated for finite m

Excursion: Likelihood-Based Inference
Maximum Likelihood Inference [9] [5]

• Y denotes the data, where Y may be scalar, vector-valued or matrix-valued (ac-
cording to context)

• The data are assumed to be generated by a model described by a probability or
density function f(Y |θ), indexed by a scalar or vector parameter θ, where θ lies in
the parameter space Ωθ, i.e.,

yi ∼ f(yi|θ) (71)

– Given the model and parameter θ, f(Y |θ) is a function of Y that gives the
probabilities or densities of various Y values

• Given the data value Y , the likelihood function L(θ|Y ) is any function of θ ∈ Ωθ

proportional to f(Y |θ), i.e., L(θ|Y ) ∝ f(Y |θ) and is defined by

L(θ|Y ) =
N∏
i=1

f(yi|θ) (72)

– The likelihood function describes the probability of the observed data Y under
the model f(Y |θ)
∗ L(θ|Y ) is a function of the parameter θ for fixed Y

∗ f(Y |θ) is a function of Y for fixed θ

– By definition, L(θ|Y ) = 0 for any θ 6∈ Ωθ

• The maximum likelihood estimate of θ is a value of θ ∈ Ωθ that maximizes the
likelihood L(θ|Y ), or equivalently, the loglikelihood l(θ|Y ) = lnL(θ|Y )
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– Suppose that for fixed data Y , two possible values of θ are being considered,
θ′ and θ′′. Suppose further, that L(θ′|Y ) = 2L(θ′′|Y ). It is now reasonable
to say, that the observed outcome Y is twice as likely under θ = θ′ as under
θ = θ′′

– More generally, consider a value of θ, say θ̂, such that L(θ̂|Y ) ≥ L(θ|Y ) for
all other possible θ; the observed outcome Y is then at least as likely under θ̂
as under any other value of θ

∗ The value θ = θ̂ is thus best supported by the data

– The value of θ that maximizes the likelihood function is of interest

• The likelihood equation is defined as

∂l(θ|Y )

∂θ
= 0, (73)

and the ML estimate can be found by solving this equation for θ

Likelihood-Based Inference with Incomplete Data [9]

• Let Y again denote the data, with Y = (Yobs, Ymis), where Yobs denotes the ob-
served values and Ymis denotes the missing values

• Let f(Y |θ) ≡ f(Yobs, Ymis|θ) be the joint distribution

• The marginal probability density of Yobs is defined as

f(Yobs|θ) =

∫
f(Yobs, Ymis|θ) dYmis (74)

• The likelihood of θ based on data Yobs ignoring the missing-data mechanism is
proportional to f(Yobs|θ), i.e.,

Lign(θ|Yobs) ∝ f(Yobs|θ), θ ∈ Ωθ (75)

– Inferences about θ can be based on this likelihood, Lign(θ|Yobs), providing the
mechanism leading to incomplete data can be ignored (see section Ignorabil-
ity

Lecture 9 (Week 46)
The Need for Imputation
• Let x ∼ fθ(x)dx x ∈ Rp. Assume regression models for xj |{xk, k 6= j} ∀j ∈
{1, . . . , p}, resulting in the imputation

x̂j = fθ̂(xk 6=j) (76)
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– Each regression is O(p2), resulting in an overall complexity of O(p3)

– Large percentage of entries are missing, e.g.,
∑
Mij/(np) = 0.988 for the

Netflix dataset

• Good methods are characterized by a small value for∑
Mij=1 ‖Xij − X̂ij‖

‖Xij‖
(77)

where X are the true data and X̂ contains the imputed values

– Remove around 10% of the available data and use the true data and the im-
puted values to calculate the error

Imputation using Singular Value Decomposition [6]
• Expression matrix X ∈ RN×p

– Rows are genes

– Columns are observations (DNA arrays)

– X = (Xc,Xm), where Xc ∈ Rc×p is the subset of complete genes

• The truncated singular value decomposition (SVD) of Xc is given by

X̂
c
J︸︷︷︸

c×p

= UJ︸︷︷︸
c×J

DJ︸︷︷︸
J×J

VT
J︸︷︷︸

J×p

(78)

– DJ is a diagonal matrix containing the leading J ≤ min(p,N) singular values
of Xc; we now assume that p < N , thus resulting in J ≤ p
∗ Singular values are the square roots of the eigenvalues of DHD, where
DH is the conjugate transpose of D

– VJ ,UJ are the corresponding orthogonal matrices of J right and left singular
vectors with

UT
JUJ = I (79)

VT
JVJ = I (80)

SVD Imputation Using a Clean Training Set

• The basic paradigm is:

1. Generate eigen-genes from the complete data

2. Impute the missing cells for a gene by regressing its non-missing entries on
the eigen-genes, and use the regression function to predict the expression
values at the missing locations
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• Rank-J SVD: provide the best rank-J matrix approximation to Xc, i.e., it solves
the problem

min
M rank J

‖Xc −M‖2F (81)

where ‖ · ‖F is the Frobenius norm

• Let x be any row of Xc, and consider the least squares regression of the p values
in x on the eigen-genes v1, . . . , vJ ∈ Rp. This regression solves the least squares
approximation problem

min
β
‖x−VJβββ‖2 = min

βββ

p∑
l=1

xl − J∑
j=1

vljβj

2

(82)

with solution

β̂ββ = (VT
JVJ)−1VT

Jx
(VJ orthogonal)

= VT
Jx (83)

and fitted values
X̂ = VJβ̂ββ (84)

– Once the VJ are found, the SVD approximates each row of Xc by its fitted
vector obtained by regression on VJ

– XcVJ = UJDJ gives all the regression coefficients β̂̂β̂β

– X̂
c

= UJDJV
T
J gives all the fitted values

• Impute the missing values of Xm by the regression

min
βββ

p∑
l non-missing

xl − J∑
j=1

vljβj

2

(85)

SVD Imputation Using All the Data

• Previous approach implies the availability of a reasonable set of complete genes

• Eqs. (82) and (85) do not include intercepts, but it is customary to center the data
before computing the SVD

– The intercept amounts to subtracting the ith row-mean

mc
i = 1/p

p∑
l=1

Xc
il (86)

from each element in row i
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• Include all the data, and solve

min
UJ ,VJ ,DJ

‖X−mIT −UJDJV
T
J ‖∗ , (87)

where ‖ · ‖∗ is a squared matrix norm, which sums the squares of all the elements,
ignoring those entries where X has missing data, and wherem = (mc

1,m
c
2, . . . ,m

c
N )

is a vector of means, one element per row of X (see Eq. (86))

Iterative Algorithm:

1. Set missing entries to the mean of the non-missing entries for each row, producing
a complete matrix X0

2. Compute SVD solution to Eq. (87) for the complete matrix Xi, and produce Xi+1

by replacing the missing values in X by the fitted values from this solution, i.e., by
regressing on Vj (see Eqs. (82), (83) and (84). Note that in Eq. (82) the intercept
is missing and should be modified to take it into account)

3. Set i← i+ 1 and repeat step 2 until

‖Mi −Mi+1‖/‖Mi‖ < ε , (88)

where ε is some threshold (e.g. 0.01) and Mi is the entire fitted matrix

Choice of Best Rank J by Cross-Validation

• See chapter “Choice of Tuning Parameter k by Cross-Validation”, and substitute k
with the rank J ; the cross-validation procedure is basically the same

k-Nearest Neighbour Imputation [14]
• k-NN assumes MAR

• NN approaches are useful in high dimensional problems in which multiple impu-
tation cannot be applied

• Drawback of k-NN is that its performance depends on the tuning parameter k

• k-NN is a localized approach that uses a weighted average of NNs based on Lq
distances. For the high-dimensional case, a new distance that explicitly uses the
correlation among variables is considered
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Distances and Computation of Neareast Neighbours

• Let X = (xis) ∈ RN×p

• Let R = (ris) be defined as

ris =

{
1 xis observed
0 xis not observed

(89)

• Distances between two observations xi and xj (rows in the data matrix X) can be
computed using the metric given by

dq(xi,xj) =

[
1

mij

p∑
s=1

|xis − xjs|q1(ris = 1) I(rjs = 1)

]1/q

, (90)

where I(x) is the indicator function defined in Eq. (7) and

mij =

p∑
s=1

I(ris = 1) I(rjs = 1) , (91)

i.e., the Lq distance only uses the components of the vectors for which observations
in both vectors are available

Imputation Procedure

• Consider the imputation for xi in component s, i.e., ris = 0 (component is missing)

• The k NNs used for the imputation estimate for xi are determined from the corre-
sponding (c× p)-dimensional reduced data set Xc = (xij , ris = 1) to obtain

x(1), . . . ,x(k) with d(xi,x(1)) ≤ · · · ≤ d(xi,x(k)) , (92)

where xT(j) = (x(j)1, . . . , x(j)p) denotes the jth NNs

• The imputation value for a fixed k is then given by

x̂is =
1

k

k∑
j=1

x(j)s (93)

– The missing value in the sth component of observation vector xi is replaced
by the average of the corresponding values of the k NNs
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Choice of Tuning Parameter k by Cross-Validation

1. Generate completely at random (MCAR) m∗ artificially missing values from the
available data {xis : ris = 1}

2. Let Xm denote denote the n × p data matrix that contains the originally missing
values ({xis : ris = 0}) and the artificially missing values ({x∗is : r∗is = 0}). The
mean absolute imputation error (MAIE) is defined as

MAIE(X∗) =
1

m∗

∑
xis:r∗is=0

|x∗is − x∗is (imputed)| (94)

3. Step 2. is repeated C times, yielding the averaged value

MAIECV =
1

R

R∑
r=1

MAIE(X∗r) , (95)

replication

4. The cross-validated mean squared imputation error (MSIE) is defined as

MSIE(X∗) =
1

m∗

∑
xis:r∗is=0

(
x∗is − x∗is (imputed)

)2
(96)

Algorithm:

1. For a specific value of k:

a) Artificially delete m∗ value/s in the data matrix (MCAR)

b) Impute these missing values and calculate the MSIE or MAIE

c) Repeat a) and b) C times to obtain MSIECV or MAIECV

2. Repeat steps a)-c) for all values of k and choose the parameter with the minimum
value of MSIECV or MAIECV as the optimal k

k-NN-Based Imputation vs. SVD-Based Imputation [13]
• k-NN imputation is accurate in the esimation of missing values for genes that are

expressed in small clusters. Further, k-NN-based exhibits higher performance for
both noisy time series and non-time series data

• SVD imputation yields best results on time-series data with low noise level. Under
such conditions the method performs better than k-NN imputation if the right
number of eigengenes is used for estimation
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Lecture 10 (Week 47)
Soft-Impute [11]
• The goal is to find the lowest rank matrix Z which matches the matrix X containing

the observed values. The optimization problem is thus stated as

minimize rank(Z)

subject to
∑

(i,j)∈Ω

(Xij − Zij)2 ≤ δ , (97)

where δ ≥ 0 is a regularization parameter controlling the tolerance in training
error and Ω = {(i, j) : Xij observed} denotes the indices of observed entries

• Problem: The rank constraint in ((97)) makes the problem for general Ω combi-
natorially hard. Solution: Reformulate ((97)) to a convex problem by introducing
the nuclear norm ‖Z‖∗, or the sum of the singular values of Z, thus resulting in
the definition

minimize ‖Z‖∗
subject to

∑
(i,j)∈Ω

(Xij − Zij)2 ≤ δ (98)

– The nuclear norm is under many situations an effective convex relaxation to
the rank constraint

• Problem: ((98)) can be solved efficiently for small problems using modern con-
vex optimization software, but since these algorithms are based on second order
methods, they can be quite expensive if the dimensions of the matrix get large.
Solution: Reformulate ((98)) in Lagrange form

min
Z

1

2

∑
(i,j)∈Ω

(Xij − Zij)2 + λ‖Z‖∗ , (99)

where λ ≥ 0 is a regularization parameter controlling the nuclear norm of the
minimizer Ẑλ

• Soft-impute iteratively replaces the missing elements with those obtained from a
soft-thresholded SVD

• Define the projection PΩ(X) to be the matrix with the observed elements of X
preserved, and the missing entries replaced by 0, i.e.,

PΩ(X)(i, j) =

{
Xij if (i, j) ∈ Ω

0 if (i, j) 6∈ Ω
(100)
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– The complementary projection P⊥Ω is defined via

P⊥Ω (X) + PΩ(X) = X (101)

• Let X̂ be the complete matrix containing all the entries of X and the imputed
entries, i.e., X̂ has no missing values; then it follows from Eq. (101) that

Z = PΩ(X) + P⊥Ω (X̂) (102)

• Using Eq. (100) it follows that∑
(i,j)∈Ω

(Xij − Zij)2 ⇔ ‖PΩ(X)− PΩ(Z)‖2F , (103)

where ‖ · ‖F is the Frobenius norm, and thus ((99)) can be reformulated to

min
Z

1

2
‖PΩ(X)− PΩ(Z)‖2F + λ‖Z‖∗ (104)

• The solution to the optimization problem shown in ((104)) is given by

Ẑ = Sλ(X) (105)

where

Sλ(X) ≡ UDλV
T withDλ = diag[(d1 − λ)+, . . . , (dr − λ)+] (106)

is the soft-thresholding operator and UDVT is the SVD of X with D = diag[d1, . . . , dr]

Algorithm

min
Z

1

2
‖PΩ(X)− PΩ(Z)‖2F + λ‖Z‖∗ (107)

1. Replace the missing entries in X with the corresponding entries from the current
estimate Ẑ = Sλ(X), i.e.,

X̂← PΩ(X) + P⊥Ω (Ẑ) (108)

2. Update Ẑ by computing the soft-thresholded SVD of X̂

X̂ = UDVT

M̂← USλ(D)VT

(109)

(110)

where the soft-thresholding operator Sλ operates element-wise on the diagonal
matrix D, and replaces Dii with (Dii − λ)+. With large λ many of the diagonal
elements will be set to zero, leading to a low-solution for ((107))
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Weighted k-Nearest Neighbour Imputation [14]
• Problem: In imputation based on the k NNs, the value of the first NN has the same

importance as the kth NN. Solution: Use weights that account for the distance of
the observations. This distances are determined by kernel functions, e.g. Gaussian
or tricube

• The weighted imputation estimate is defined as

x̂is =

k∑
j=1

w(xi,x(j))x(j)s (111)

where x(j) is the jth neighbour and the weights are given by

w(xi,x(j)) = K(d(xi,x(j))/λ)

/
k∑
l=1

K(d(xi,x(l)) , (112)

with K(·) being the kernel function and λ the tuning parameter

– For small λ the weights decrease very strongly with distance

– For λ→∞ all neighbours are of equal weight

– λ can be choosen by cross-validation; see chapter “Choice of Tuning Param-
eter k by Cross-Validation” for a description of the algorithm (replace k with
λ)

Lecture 11 (Week 48)
Directed Acyclic Graph (DAG) Models
Graph Terminology

• A graph G = (V,E) consists of vertices V and edges E

• A directed acyclic graph (DAG) is a directed graph without directed cycles

• i→ j ⇐⇒ i is parent of j, i.e., pa(j) = {i}

• i → j → k → l ⇐⇒ i, j, k, l are all ancestors of l and descendants of i, i.e.
an(l) = {i, j, k, l} and desc(i) = {i, j, k, l} respectively

DAGs and Random Variables

• A DAG model is a combination (G, f), where G is a DAG and f is a distribution
that factorizes according to G

• Each node i in the DAG corresponds to a random variable Xi
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• Chain rule for the joint probability distribution:

f(x1, . . . , xp) = f(x1)f(x2|x1) . . . f(xp|x1, . . . , xp−1) (113)

– Problem: It’s rather expensive to store the complete joint distribution, since
it requires a probability table of size 2p, with p being the number of random
variables

• The set of variables pa(j) is said to be Markovian parents of Xj if

f(xj |x1, . . . , xj−1) = f(xj |pa(j)) (114)

• From Eqs. (113) and (114) it follows that the underlying distribution is composed
via

f(x1, . . . , xp) =

p∏
j=1

f(xj |pa(j)) (115)

i.e., we can draw a DAG accordingly, and the distribution is said to factorize ac-
cording to this DAG

• X ⊥ Y ⇐⇒ X,Y are independent

– Example: From X1 ⊥ X3|X2 it follows that

f(x1|x2, x3) = f(x1|x2), (116)

f(x3|x1, x2) = f(x3|x2) (117)

and for the joint distribution we thus have

f(x1, x2, x3) = f(x1)f(x2|x1)f(x3|x1, x2)

= f(x1)f(x2|x1)f(x3|x2) (118)

resulting in the DAG 1 → 2 → 3, which is only one of the p! possibilities to
construct the DAG for the given conditional independence, i.e., a distribution
can factorize according to several DAGs

Uses of DAG Models

Estimating the joint density from low order conditional densities:

• Estimating the joint density is an expensive task

• If you know that the distribution factorizes according to a DAG, one only needs to
estimate f(xi|pa(i)) for i = 1, . . . , p; if the parent sets are small, only low order
conditional densities need to be estimated
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Reading off conditional independencies from the DAG:

• Markov models: the future is independent of the past given the present, i.e.,

1→ 2→ · · · → (t− 1)→ t→ (t+ 1) (119)

or

Xt+1 ⊥ (Xt−1, Xt−2, . . . , X1)|Xt (120)

• In DAG models, the Markov property can be expressed as

S ⊥ {nondesc(S)\ pa(S)} |pa(S) (121)

where S is any collection of nodes. This means that S is independent of its non-
descendants given its parents

• Use d-separation to read off arbitrary conditional (in)dependencies [12]. If every
path from node i to node i is d-separated by a set of nodes S, then the random
variables Xi and Xj are conditionally independent given S, i.e. Xi ⊥ Xj | S
Rule 1 (Unconditional Separation) i and j are d-connected if there is an un-

blocked path between them, i.e., a path that can be traced without traversing
a collider. A non-endpoint node k is a collider on a path if the path contains
→ k ←, i.e., the arrows collide at k

Rule 2 (Blocking by Conditioning) i and j are d-connected, conditioned on a
set S of nodes, if there is a collider-free path between i and j that traverses
no member of S. If no such path exists, we say that i and j are d-separated
by S

– Example: The following graph is given

x → r → s → t ← u ← v → y

with · denoting a node in the conditioning set S, i.e., S = {r, v}. Rule 2
tells us that x and y are d-separated by S. The only pairs of unmeasured
nodes that remain d-connected in this example, conditioned on S, are s
and t and u and t

Rule 3 (Conditioning on Colliders) If a collider is a member of the conditioning
set S, or has a descendant in S, then it no longer blocks any path that traces
this collider

– Example: The following graph is given

x → r → s → t ← u ← v → y
↓ ↓ ↓
r p q
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with · denoting a node in the conditioning set S, i.e., S = {r, q}. Rule 3
tells us that s and y are d-connected by S, because the collider at t has a
descendant in S, which unblocks the path s− t− u− v − y

• In any distribution that factorizes according to a DAG: if i and j are d-separated
by S in the DAG, then Xi and Xj are conditionally independent given S in the
distribution

• Example: The following DAG is given:

yellow teeth← smoking→ tar in lungs→ cancer← asbestos. (122)

Denote d-separation by ⊥; then

yellow teeth ⊥ cancer | smoking X
tar ⊥ asbestos X

tar ⊥ asbestos | cancer ×
yellow teeth ⊥ asbestos | cancer ×

Lecture 12 (Week 49)
Constraint-Based Structure Learning [2]
• Given all conditional independence relationships in the observational distribution,

we should be able to find the DAG

• Several DAGs can encode the same conditional independence information. Such
DAGs are called Markov equivalent and form a Markov equivalence class

• Markov equivalent DAGs have the same skeleton and the same v-structures

• Markov equivalence class can be described uniquely by a completed partially di-
rected acyclic graph (CPDAG). A CPDAG has the following properties:

1. Every directed edge exists in every DAG in the Markov equivalence class

2. For every undirected edge Xi − Xj there exists a DAG with Xi → Xj and a
DAG with Xi ← Xj in the Markov equivalence class

3. A CPDAG C is said to represent a DAG G if G belongs to the Markov equiva-
lence class described by C

• Constraint-based methods require a Markov and faithfulness assumption

Causal Markov Condition Once we know all direct causes of an event, the event
is probabilistically independent of its causal non-descendants [4]
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– Example: Suppose we see a broken glass bottle on the bicycle path with
small pieces of glass lying around. Learning the cause of this broken
bottle or that a piece from the bottle hurt a passing dog, does not change
our expectation of a flat tire caused by the pieces of glass on the road

Faithfulness Assumption All interdependencies observed in the data are struc-
tural, resulting from the structure of the causal graph, and not accidental,
e.g., by some particular combination of parameter values that result in causal
effects canceling out [4]

• Under both assumptions: there is an edge between Xi and Xj in the DAG if and
only if Xi and Xj are dependent given every subset of the remaining variables

– The skeleton of a DAG is determined uniquely by conditional independence
relationships

• Assuming faithfulness, a CPDAG can be estimated by the PC-algorithm

The PC-Algorithm: Oracle Version

• The oracle version of the PC-algorithm works under the assumption that we have
perfect conditional independence information between all variables [2]

1. No edge between Xi and Xj

⇐⇒
Xi ⊥ Xj | S for some subset S of the remaining variables

⇐⇒
Xi ⊥ Xj | S′ for some subset S′ of adj(Xi)\{Xj} or of adj(Xj)\{Xi}

2. Start with the complete graph

3. For k = 0, 1, . . . do:

• Consider all pairs of adjacent vertices (Xi, Xj) and remove edge if they are
conditionally independent given some subset of size k of adj(Xi)\{Xj} or of
adj(Xj)\{Xi}

Until k > max(|adj(Xi)\{Xj}|, |adj(Xj)\{Xi}|)

The PC Algorithm: Sample Version [8]

• In the sample version of the PC-algorithm, the conditional independence relation-
ships have to be estimated from the data [2]

• In the multivariate Gaussian setting, this is equivalent to testing for zero partial
correlation, i.e.,

H0 : ρi,j|S = 0 Ha : ρij|S 6= 0 (123)
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where ρi,j|S denotes the partial correlation between Xi and Xj given S and can be
computed via regression, inversion of parts of the covariance matrix, or a recursive
formula

– Assuming that the distribution f of the random vector X is mutlvariate nor-
mal. Then, ρi,j|S = 0 if and only if Xi and Xj are conditionally independent
given S

• Apply Fisher’s Z-transform for testing whether a partial correlation is zero or not:

Z(i, j|S) =
1

2
log

(
1 + ρ̂i,j|S

1− ρ̂i,j|S

)
(124)

• Reject the null-hypothesis H0 : ρi,j|S = 0 against the two-sided alternative Ha :
ρij|S 6= 0 if √

n− |S| − 3 Z(i, j|S) > Φ−1(1− α/2) (125)

where Φ(·) denotes the cumulative distribution function of N (0, 1) and α is the
significance level and serves as a tuning parameter

Consistency for High-Dimensional Data [8]

• Most of the time, data sets contain many more variables than observations, i.e.,
p� n

• Consider a framework in which the graph is allowed to grow with the sample size
n

– DAG: Gn
– CPDAG: Cn
– Number of variables: pn
– Variables: Xn1 , . . . ,Xn pn

– Distribution: Pn

• The following assumptions are made:

1. The dimension pn = O(na), for some 0 ≤ a <∞
2. The maximal number of neighbours in the DAG Gn is qn = O(n1−b) for some

0 < b ≤ 1

3. The absolute values of the partial correlations ρi,j|S are bounded from below
and above:

inf{|ρi,j|S| : i, j,S with ρi,j|S 6= 0} ≥ cn ,

sup
n;i,j,S

|ρi,j|S| ≤M < 1

(126)

(127)

with c−1
n = O(nd) for some 0 < d < b/2
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• Denote the estimated CPDAG by Ĉn(αn) and the true CPDAG by Cn from the DAG
Gn. Then, there exists a sequence αn → 0 such that

P[Ĉn(αn) = Cn] = 1−O(exp{−Kn1−2d}) (128)

for some 0 < K <∞ and 0 < d < b/2
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