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Disclaimer
This is a summary of the Advanced Quantum Chemistry lecture taught by Prof. Reiher
during the autumn semester 2015 at the ETH Zürich and was written by me as a prepa-
ration for the oral exam. All of the equations presented in this summary have been
presented during the lecture [4], which is based on [5]; equations taken from other
sources are appropriately referenced in the text.

Lecture 1(a): Standard Quantum Chemistry
• The goal of quantum chemistry is to retrieve molecular properties of interest like

reaction energies, excitation energies, bond lengths and angles, vibrational fre-
quencies, dipole moments, etc.

– All quantities can be derived from the electronic energy Eel, either as differ-
ences or derivatives of Eel

• The non-relativistic Hamiltonian operator of a molecule of N electrons and M
atomic nuclei is given by

Ĥ = T̂ + V̂ = T̂e + T̂n + V̂ee + V̂en + V̂nn , (1)
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with

T̂e =
N∑
i=1

(
−1

2
∇2
i

)
, (2)

T̂n =
M∑
I=1

(
− 1

2MI

)
, (3)

V̂ee =
N∑
i=1

∑
j>i

1

|ri − rj |
, (4)

V̂en = −
N∑
i=1

M∑
I=1

ZI
|ri −RI |

, (5)

V̂en =

M∑
I=1

M∑
J>I

ZI ZJ
|RI −RI |

, (6)

where T̂n consists of the kinetic energy operators for each nucleus in the system, T̂e

consists of the kinetic energy operators for each electron in the system, V̂ee is the
potential energy arising from Coulombic electron-electron repulsions, V̂en is the
total electron-nucleus Coulombic attraction in the system, and Vnn is the potential
energy arising from the Coulombic nuclei-nuclei repulsion [1]

• The electronic Schrödinger equation is defined as

ĤelΨ
{RI}
el,n ({ri}) = EelΨ

{RI}
el,n ({ri}) , (7)

with the superscript implying that the electronic Schrödinger equation is solved
for a given set of nuclear coordinates {RI}, which reduces then the number of
dynamical coordinates over which one has to integrate

– The Hamiltonian Ĥel is defined as (see Eq. (1))

Ĥel = Ĥ − T̂n (8)

• Separation of electronic and nuclear motion: The Schrödinger equation depends
on both nuclear and electronic coordinates, and is defined as

Ĥψk({ri},RI) = Ekψk({ri},RI) (9)

– Exact ansatz: The total wave function Ψk may be expanded from a complete
basis set consisting of the electronic wave functions Ψel,n, i.e.,

ψk({ri},RI) =
∑
n

χk,n({RI}) ·Ψel,n({ri},RI) (10)
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– Born-Oppenheimer approximation: The total wave function Ψk is expressed
as a product of a single electronic and nuclear wave function, i.e.,

ψk({ri},RI) ≈ χk,n({RI}) ·Ψ{RI}
el,n RI({ri}) (11)

• The electronic wave function Ψel can be approximated using one-electron func-
tions φi. The Slater determinant is the general ansatz for an antisymmetrized and
normalized N -electron wave function and is given by

Ψel(r1, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣
φ1(x1) . . . φN (x1)

...
. . .

...
φ1(xN ) . . . φN (xN )

∣∣∣∣∣∣∣ (12)

• Hartree-Fock theory uses a single Slater determinant to approximate the exact
ground-state energy Eel,0. Since the Hartree-Fock approach does not consider elec-
tron correlation effects, i.e. effects arising from the interaction between electrons,
even by using a complete basis set (Hartree-Fock limit) a Hartree-Fock error is in-
troduced, which is called the correlation energy Eel,corr. The correlation energy
is defined as the difference between the Hartree-Fock energy calculated at the
Hartree-Fock limit EHF

el and the exact ground-state energy Eel,0, i.e.,

Eel,corr = EHF
el − Eel,0 (13)

– Møller-Plesset perturbation theory, configuration interaction, multi-configuration
self-consistent-field methods, and density functional theory consider the elec-
tron correlation effects
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Lecture 1(b): Newtonian Mechanics and Maxwell’s
Electrodynamics
• An inertial frame IS has a constant velocity

• Relativity principle of Galilei:

1. All inertial frames are equivalent; none can be favored over another

2. Newton’s laws of motion have the same form in all inertial frames of refer-
ence; this is called invariance in form or covariance

– General covariance: invariance of the form of physical laws under arbi-
trary differentiable coordinate transformations

– Newton’s laws of motion are also called Gallilean-covariant, since they
are invariant under Galilean transformations

• Lagrange Formalism: Any mechanical system of N particles in R3, which is subject
to R constraints, features in general f = 3N − R degrees of freedom represented
by generalized coordinates q1, . . . , qf independent of each other and compatible
with all constraints. The Lagrangian is thus defined as

L(q, q̇, t) = T (q, q̇, t)− V (q, q̇, t) (14)

• The Poisson bracket between two arbitrary phase space functions u = u(q, p, t) and
v = v(q, p, t) is defined as

{u, v} = {u, v}q,p =

f∑
i=1

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
(15)

Electrodynamics
• Maxwell’s equations describe the classical behaviour of electric and magnetic fields

and their interation with charged particles and currents. The Maxwell equations
consist of the following equations (Gaussian units are used, i.e., 4πε0 = 1):

1. Gauss’s law for electric fields states that the electric flux out of any closed
surface is proportional to the total charge enclosed within the surface [3]:

divE(r, t) = 4πρ(r, t) (16)

2. Ampères’ law states that a current density j and a time-varying electric field
E give rise to a magnetic vortex field B:

curlB(r, t)− 1

c

∂E(r, t)

∂t
=

4π

c
j(r, t) (17)
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3. Faraday’s law of induction states that a time-varying magnetic field causes an
electric vortex field:

curlE(r, t) +
1

c

∂B(r, t)

∂t
= 0 (18)

4. Gauss’s law for magnetism states that magnetic monopoles, i.e., magnetic
charges, do not exist:

divB(r, t) = 0 (19)

• The continuity equation describes the transport of some quantity and is a direct
result of Eqs. (16) and (17), and is given by

∂ρ

∂t
+ div j = 0 (20)

• Electric and magnetic fields are completely determined by a set of only four fields
- the scalar potential φ = φ(r, t) and the vector potential A = A(r, t):

E = − gradφ− 1

c

∂A

∂t
(21)

B = curlA (22)

– A vector potential is a function A such that [6]

B ≡ curlA (23)

– From Eqs. (21) and (22) we find that φ and A are not unique, since both are
defined in terms of derivatives of the potentials, meaning there is an infinite
family of possible potentials that will alll lead to the same fields [2]:

φ→ φ′ = φ− 1

c

∂χ(r, t)

∂t
(24)

A→ A′ = A + gradχ(r, t) (25)

∗ The freedom to add a constant potential is called gauge freedom [2].

∗ The different potentials one can obtain from Eqs. (24) and (25) that lead
to the same physical field are generated by means of a gauge transforma-
tion [2].

· In our case, a gauge transformation is any formal, systematic trans-
formation of the potentials φ and A that leaves the fields E and B
invariant.[2]. Any observable, e.g. E and B must be gauge invariant.

• The Lagrangian that yields empirically confirmed equations of motions is given by

L(r, ṙ, t) =
1

2
mṙ2︸ ︷︷ ︸
≡T (ṙ)

− q φ(r, t) +
q

c
ṙ ·A(r, t)︸ ︷︷ ︸

≡U(r,ṙ,t)

(26)
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• The Hamiltonian for a charged particle moving in electromagnetic fields is defined
as

H(r,p, t) =
1

2m

[
p− q

c
A(r, t)

]2
+ q φ(r, t) (27)
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Lecture 2: Einsteinean Mechanics
• Galilei transformations permit velocities larger than the speed of light in vacuum
c, but it has been verified in numerous experiments that all observers in all inertial
frames, independently of their state of motion, always measure the same speed of
light,

c ≈ 299792
km

s
= const , ∀IS . (28)

• Maxwell’s equations directly yield a wave equation, which states that the propaga-
tion of electromagnetic fields in vacuum occurs with the speed c.

– Experimentally one finds that the Maxwell equations are valid for any inertial
system.

• Consider two events E1, E2 connected by a light signal. An observer in IS will
describe this process by the two events

E1 : (t1, r1) and E2 : (t2, r2) (29)
|r2 − r1|
t2 − t1

= c⇔ c2(t2 − t1)2 − (r2 − r1)2 = 0 . (30)

– The four-dimensional distance or space-time interval s12 between any two
events is defined as

s2
12 ≡ c2(t2 − t1)2 − r2

12 . (31)

Lorentz Transformations*
• Four-dimensional space-time vector:

x = xµ =


x0

x1

x2

x3

 =


ct
x
y
z

 =

(
ct
r

)
. (32)

• Metric tensor (Minkowski tensor):

g = gµν = diag(1,−1,−1,−1) . (33)

– Express the squared four-dimensional distance s2
12 between two events (Eq.

(31)) as

s2
12 = gµν(xµ2 − x

µ
1 )(xν2 − xν1) = c2(t2 − t1)2 − r2

12 (34)
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∗ Einstein’s summation convention is used, i.e.,

y =
3∑
i=1

cix
i = c1x

1 + c2x
2 + c3x

3

= cix
i (35)

• The flat four-dimensional space described by space-time vectors x and equipped
with the metric g is called Minkowski space.

• The covariant four-dimensional space-time vector xµ is defined as

xµ =


x0

x1

x2

x3

 =


ct
−x
−y
−z

 =

(
ct
−r

)
. (36)

– The contravariant four-dimensional space-time vector xµ is defined in Eq.
(32).

• The metric g can be employed to lower (or raise) indices of any vector according
to

xµ = gµνx
ν ⇔ xµ = gµνxν . (37)

• The four-dimensional scalar product between two 4-vectors a and b is defined by

aḃ = aT gb = aµbµ = a0b0 − a · b . (38)

• Transformations that leave the space-time interval s2
12 for any two events invariant

are called Lortentz transformations and are given by

x′ = Λx+ b⇔ x′µ = Λµ νx
ν + bµ . (39)

– The fundamental property of the Lorentz transformations is

ΛT gΛ = g ⇔ Λα µgαβΛβ ν = gµν . (40)

– Shorthand notations:

Λ = Λ−1 = Λ
µ
ν ≡ Λν

µ , (41)

Λν
µ ≡ gναgµβΛα β . (42)

• Contravariant Lorentz 4-vector:

A′µ = Λµ νA
ν . (43)
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• Covariant Lorentz 4-vector:

B′µ = Λ
µ
νBν = Λµ

νBν . (44)

• 4-gradient:

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,∇
)

. (45)

The d’Alembert Operator [Eq. (75)]
The d’Alembert operator is defined as

� ≡ ∂µ∂µ =
1

c2

∂2

∂t2
−∆ (46)

and is the Laplace operator of the Minkowski space.

The Lorentz Factor γ [Eq. (87)]

γ =
1√

1− v2/c2
(47)

Derivation

1. For the sake of simplicity a Lortenz boost in x-direction is considered, i.e.,(
ct′

x′

)
=

(
Λ0

0 Λ0
1

Λ1
0 Λ1

1

)(
ct
x

)
. (48)

2. By considering the emission of two light signals at t = t′ = 0 from the origin, one
in negative x-direction and one in positive x-direction we find that Λ0

0 = Λ1
1 and

Λ1
0 = Λ1

0, such that only two parameters of Λ remain to be determined. With
further considerations, we finally find that

Λ1
0 = −(v/c)Λ0

0 . (49)

3. The Lorentz back transfromation from IS’ to IS is given by replacing v with −v.

4. Considering the Lorentz back and forth transformations for the x-coordinate we
find

x = Λ0
0(x′ + vt′) = (Λ0

0)2

(
1− v2

c2

)
x⇔ Λ0

0 =
1√

1− v2

c2

≡ γ = γ(v) . (50)
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General

• The Lorentz factor is the factor by which time, length and relativistic mass change
for an object while that object is moving.

– Length contraction:

1. An object of length l0 is at rest in IS’. An observer in IS’ will measure the
length of this stick to be l0. This length of an object is denoted as its
proper length l0.

2. The length of this object in IS must be measured at the same time t, i.e.
t1 = t2 = 0.

3. By applying the Lorentz boost, one finds that the length of this object in
IS is defined as

l =
l0
γ

, (51)

thus meaning that the length of moving bodies is smaller than their
proper length. This phenomenon is called length contraction of moving
bodies.

– Time delation:

1. Place a clock at the origin of IS’ which shall be at rest in IS’.

2. Two measurements are in IS for position x1, x2, where x1 is assumed to
be 0.

3. Define two eventsE1, E2 by the passing of the IS’-clock at positions x1, x2,
which are at rest in IS:

E1 : (t1 = 0, x1 = 0) in IS → (t′1 = 0, x′1 = 0) in IS’ (52)

E1 : (t2, x2 = vt2) in IS → (t′2, x
′
2 = x′1 = 0) in IS’ (53)

(54)

4. The time difference of these two events for an observer in IS’ is

τ ≡ t′2 − t′1 (55)

and it’s called the proper time of the clock.

5. With t ≡ t2 − t1 denoting the time difference in IS, the relation between
the time differences in IS and IS’ is

t = γτ , (56)

meaning that the time difference t in IS is thus always larger than the
time difference τ in IS’, where the clock is at rest. This is called time
delation, meaning that moving clocks show different times as compared
to those at rest.
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• For small velocities v � c, the Lorentz factor might be approximated by the first
terms of its series expansion, i.e.,

γ(v) ≈ 1 +
1

2

v2

c2
+

3

8

v4

c4
+ . . . . (57)

The Covariant Continuity Equation [Eq. (125)]
The covariant continuity equation is given by

∂µj
µ︸︷︷︸

Lorentz scalar

= 0⇔ ∂ρ

∂t
+ div j = 0 , (58)

where

(jµ(x)) = (cρ(r, t), j(r, t)) (59)

combines the charge density ρ and the current density j to give a four-component quan-
tity. Further, a Lorentz scalar is a scalar which is invariant under Lorentz transformation.

The General Lorentz Boost [Eq. (90)]
A rotation-free Lorentz transformation is called a Lorentz boost. The general Lorentz
boost is defined as

Λ(v) =


γ −γv1/c −γv2/c −γv3/c

−γv1/c

−γv2/c δij +
vivj(γ−1)

v2

−γv3/c

 , (60)

which describes the general boost from IS to IS’, which moves with constant velocity
v =

∑
viei relative to IS and where

γ =
1√

1− v2/c2
. (61)

The Energy-Momentum Dispersion Relation [Eq. (108)]

E2 = c2p2 +m2c4 (62)

Derivation

1. Generalize the nonrelativistic three-dimensional definition of velocity by the so-
called 4-velocity uµ, i.e.,

uµ =
dxµ

dτ
= γ(c,v) . (63)
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• Since the proper time τ is a Lorentz scalar and the space-time xµ is a Lorentz
vector, uµ is also a Lorentz vector.

2. The 4-momentum pµ is defined analogously to the nonrelativistic set-up, i.e.,

pµ =

(
E

c
,p

)
. (64)

• The relativistic 3-momentum p is defined as

p = γmv . (65)

• E and p are called relativistic energy and momentum, respectively.

3. According to Einstein’s famous equation E = γmc2, by rewriting the squared rel-
ativistic energy expression E2 we arrive at the energy-momentum dispersion rela-
tion given in Eq. (62).

4. Eq. (62) actually gives raise to anti-particles with negative energy, since

E =

{
γmc2 E > 0

−γmc2 E < 0
(66)

The Covariant Form of the Lagrangian [Eq. (119)]
Since the electromagnetic force FL = q(E + v × B) (Lorentz force) has a velocity-
dependent component, the simplest choice for interaction term is proportional to Aµuµ,
which gives

L2(x, u) = −mc
√
uµuµ −

q

c
Aµ(x)uµ . (67)

Derivation

1. The relativistic Lagrangian might be expressed in terms of x(τ):

L2 = L2(x, u) . (68)

2. The Euler-Lagrange equations are derived from the Hamiltonian principle, δS = 0.

3. The Lagrangian for a free particle is derived in the exercises and is given by

L2(u) = −mc
√
uµuµ . (69)

4. The Lagrangian for a particle in an external electromagnetic field has to be a linear
function of the 4-potential Aµ = (φ,A), since the electromagnetic force FL =
q(E + v ×B) (Lorentz force) is linear in the field strengths E and B

5. Since the Lorentz force FL has a velocity-dependent component, the simplest
choice for the interaction term is proportional to Aµuµ, thus resulting in the form
shown in Eq. (67).
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Lecture 3: Two Moving Classical Charges
Symmetrized Darwin Interaction for Velocities Small Compared to The
speed of Light [Eq. (168)]

V12 =
q1q2

r12
− q1q2

2c2

[
ṙ1 · ṙ2

r12
+

(r12 · ṙ1)(r12 · ṙ2)

r3
12

]
+O(c−3) (70)

Derivation

1. Particle 2 produces φ2 and A2 and are exerted on particle 1

• Particle 2’s position is called the retardation position.

2. Potential energy of particle 1 in the field of particle 2 at time t in IS is given by

V12(t) = q1φ2(r1, t)−
q1

c
ṙ1(t) ·A2(r1, t) . (71)

3. IS’ is moving with the same velocity as particle 2, i.e.,

v = ṙ2 . (72)

a) Particle 2 is observed at rest in IS’, this means that

A′2(r′, t′) = 0 ∀r′ , (73)

since a charge at rest does not produce magnetic fields.

b) Only the scalar potential, i.e., the standard Coulomb potential of a point
charge, contributes to the interaction energy:

φ′2(r′, t′) =
q2

|r′ − r′2|
(74)

4. Perform a Lorentz transformation using Λ(v) to obtain the space-like coordinate r′

from the space-time coordinate (ct, r) in IS.

a) φ′2 is then expressed at the position of particle 1, i.e.,

φ′2(r′1, t
′
1) =

q2

|r1 − r2 + . . . |
(75)

5. Perform an inverse Lorentz transformation using Λ(v)−1 = Λ(−v) to include the
portential terms.

• Since two different times t1 and t2 would create insurmountable difficulties
upon a later transition to quantum mechanics, it is desirable to calculate the
interaction energy solely from quantities defined at an absolute time, say, t1.

Giuseppe Accaputo 13 www.accaputo.ch

www.accaputo.ch


Advanced Quantum Chemistry (Autumn Semester 2015 · ETH Zürich)

6. The resulting general Darwin interaction energy is not symmetric with respect to
the particle labels. The symmetrized version is derived by introducing a gauge
transformation of the Lagrangian, i.e., by adding a total time derivative of

F (ṙ2, r12, r12) =
q1q2

2c2

r12 · ṙ2

r12
(76)

to the potential energy V12.

Lecture 4:
Some Important Elements of Quantum Theory
Unitary Transformations [Eq. (176)]
The hermitean operator Ô and UÔU † with U being unitary possess the same set of
eigenvalues, i.e.,

ÔΨ = aΨ and (UÔU †) = a(UΨ) . (77)

• An operator U on Hilber space H is unitary if

UU † = U †U = 1 . (78)

• A unitary operator U changes the state, but not the physics. It also preserves
length, i.e.,

〈UΨn|UΨm〉 = 〈Ψn|Ψm〉 ∀Ψn,Ψm ∈ H . (79)

Heisenberg’s Equation of Motion [Eq. (189)]

dÔ(H)

dt
=

i

~

[
Ĥ, Ô(H)

]
(80)

Derivation

1. Introduce the unitary transformation

U(t) = exp{− i

~
Ĥ(S)t} . (81)

2. U(t) allows to describe the propagation of any state Ψ(t) in time, i.e.,

Ψ(t) = U(t)Ψ(t0) , (82)

where Ψ(t0) = Ψ(t = 0) is time-independent.
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3. The unitary transformation U(t) allows us to switch from an operator in the Schrödinger
picture to the corresponding one in the Heisenberg picture, i.e.,

Ô(H) = U †(t)O(S)U(t) (83)

4. Differentiate Eq. (83) and we obtain the Heisenberg equation of motion shown in
Eq. (80).

General

Schrödinger Picture : The equation of motion

i̊~
∂

∂t
Ψn(r, t) = ĤΨn(r, t) . (84)

defines the Schrödinger picture, where the state Ψ is propagated in time while the
observables are stationary, i.e., Ĥ → Ĥ(S).

• The Schrödinger picture holds for ordinary observables like energy, momen-
tum and position rather than for a system interacting with a time-dependent
external potential (like an electromagnetic light wave).

Heisenberg Equation of Motion : The Heisenberg picture rests on stationary states
but time-propagated operators.

Schrödinger Velocity Operator [Eq. (198)]

˙̂r =
p̂

m
(85)

Derivation

1. Heisenberg’s equation of motion, Eq. (80), can be utilized to define the velocity
operator ˙̂r,

v̂ ≡ ˙̂r =
dr̂

dt
=

i

~
[Ĥ, r̂] . (86)

2. By inserting the Schrödinger Hamiltonian Ĥ = p̂2

2m + V̂ (r̂) in Eq. (86) we get the
Schrödinger velocity operator shown in Eq. (85).

General Formulation of the Ehrenfest Theorem [Eq. (199)]
If we consider the expectation value of an observable O for a normalized state Ψ, then
its time derivative is given by

d

dt

〈
Ô
〉

Ψ
=

i

~

〈
[Ĥ, Ô]

〉
Ψ

+

〈
∂Ô

∂t

〉
Ψ

. (87)
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• If Ψ is an eigenfunction of Ĥ or if Ô commutes with Ĥ, then we have

d

dt

〈
Ô
〉

Ψ
=

〈
∂Ô

∂t

〉
Ψ

. (88)

Hellmann-Feynman Theorem [Eq. (202)]
For the special choice that Ô is the Hamiltonian Ĥ in Eq. (87), we have

d

dt

〈
Ĥ
〉

Ψ
=

〈
∂Ĥ

∂t

〉
Ψ

. (89)

The Hellmann-Feynman theorem generalizes this for first derivatives of any parameter
λ, on which the wave function may depend, i.e.,

d

dλ

〈
Ĥ
〉

Ψ
=

〈
dĤ

dλ

〉
Ψ

. (90)

Density Operator [Eq. (205)]

ρ̂r =
N∑
i=1

δ(3)(ri − r) (91)

Derivation

1. Relate

〈ρ̂r〉 ≡
∫ ∞
−∞

d3r1 . . .

∫ ∞
−∞

d3rN Ψ†(r1, . . . , rN , t) ρ̂rΨ(r1, . . . , rN , t) (92)

to the Born interpretation so that we must fulfill

〈ρ̂r〉 = N

∫ ∞
−∞

d3r1 . . .

∫ ∞
−∞

d3rN Ψ†(r1, . . . , rN , t)Ψ(r1, . . . , rN , t) , (93)

i.e.,

ρ̂r = N . (94)

This is achieved by defining ρ̂r as shown in Eq. (91), since∫ ∞
−∞

d3x δ(3)(x) = 1 , (95)

thus resulting in ∫ ∞
−∞

d3r1 . . .

∫ ∞
−∞

d3rN

N∑
i=1

δ(3)(ri − r) = N . (96)
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Schrödinger Current Density and Continuity Equation [Eq. (210)]
The Schrödinger current density and continuity equation is defined as

∂

∂t
(Ψ?Ψ) = −∇ · ~2

2mi
{Ψ?∇Ψ− (∇Ψ)?Ψ}︸ ︷︷ ︸

≡j

, (97)

where j is the nonrelativistic current density for the time-dependent state Ψ(r, t).

Derivation

1. Use Ehrenfest’s theorem to calculate the time evolution of the density, i.e.,

dρ(r, t)

dt
=

d

dt
〈ρ̂r〉 . (98)

2. Assume that all particles are electrons and hence physically indistinguishable.

3. In the most simple case of a single particle this reduces to Eq. (97).

Klein-Gordon Equation for a Free Particle [Eq. (215)]

−~2 ∂
2

∂t2
Ψ = (−~2c2∇2 +m2

ec
4)Ψ (99)

Derivation

1. Schrödinger quantum mechanics is not Lorentz covariant; time and spacial coor-
dinates occure to different orders in the derivatives.

2. Correspondence Principle: Apply substitutions to the relativistic energy of the
freely moving particle E =

√
p2c2 +m2

ec
4, i.e.,

E → i~
∂

∂t
and p→ −i~∇ . (100)

3. Since it would be difficult to evaluate the square root ∇2 in position space, start
again from the squared energy expression E2 = p2c2+m2

ec
4. By applying again the

substitutions in Eq. (100) we get the Klein-Gordon equation shown in Eq. (99).

Klein-Gordon Equation in Covariant Form [Eq. (216)]
In covariant form the Klein-Gordon equation shown in Eq. (99) reads

[� +
(mec

~

)2
]Ψ = 0 . (101)
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Klein-Gordon Eigenvalue for Free Particles [Eq. (218)]

E = ±
√
p2c2 +m2

ec
4 (102)

Rejection of the Klein-Gordon Equation

Since the Klein-Gordon equation is a second-order differential equation in t, two inte-
gration constants arise which allow one to choose the initial values of Ψ and ∂Ψ/∂t
independently of one another in such a way that ρ may take positive or negative val-
ues. Consequently, ρ is not positive definite and, hence, does not represent a probability
density distribution, which must take strictly positive values for any coordinates t and
xk. The Klein-Gordon equation is thus rejected as fundamental quantum mechanical
equation.

Lecture 5: Dirac’s Theory of the Electron
Dirac Equation for a Free Particle [Eq. (270)]

[cα · p̂ + βmec
2]Ψ = i~

∂

∂t
Ψ (103)

Derivation

1. The correct relativistic equation for the electron requires that it does not contain
second order derivatives w.r.t. time, which would result in a negative Klein-Gordon
density.

2. The Klein-Gordon equation features the correct free-particle energies, meaning
that we must be able to turn the Dirac equation into a Klein-Gordon equation so
that the correct eigenvalues are obtained.

3. The standard representation is given by the 4× 4 matrices

αi =

(
0 σi
σi 0

)
and β =

(
12 0
0 −12

)
. (104)

• The choice of the 4 × 4 matrices is not unique (and also higher dimensions
are possible): For example, the Weyl representation

αiWeyl =

(
σi 0
0 −σi

)
and βWeyl =

(
0 12

12 0

)
(105)

is also a working representation.
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Dirac Equation for a Free Particle with Electromagnetic Fields [Eq. (305)]
The equation for a free particle with electromagnetic fields is defined as

i~
∂

∂t
Ψ =

[
cα ·

(
p− qe

c
A
)

+ βmec
2 + qeφ

]
Ψ , (106)

where A = (A1, A2, A3) contains the contravariant components of the vector potential
Ai = −Ai.

Derivation

1. The most important requirement for truly fundamental physical equations is their
invariance in form under Lorentz transformations, i.e., Lorentz covariance.

2. The only guiding principle for the derivation of the field-dependent Dirac equation
for a single electron interacting with external electromagnetic fields is Lorentz
covariance.

Dirac Equation for a Free Particle in Split Notation [Eqs. (272) and (273)]

cσ · p̂ΨS +mec
2ΨL = i~

∂

∂t
ΨL (107)

cσ · p̂ΨL −mec
2ΨS = i~

∂

∂t
ΨS (108)

Derivation

1. Due to the block structure of the matrices αi in Eq. (104), the spinor Ψ is often
split into an upper and lower 2-spinor, ΨL and ΨS ,

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 =

(
ΨL

ΨS

)
. (109)

2. Using the new definition of the spinor Ψ, Eq. (104) can be cast in split notation,
as displayed in Eqs. (107) and (108).

Dirac Density and Current Density [Eqs. (250) and (251)]
The Dirac current density is defined as

j ≡ cΨ†αΨ, i.e., jk ≡ cΨ†αkΨ . (110)
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The 4-current is then given by

jµ = (j0, jk) , (111)

with

j0 ≡ cρ (112)

Energy of a Free Dirac Electron [Eq. (291)]

E = ±
√

p2c2 +m2
ec

4 .. (113)

Derivation

1. The energy of a free Dirac electron results from the derivation of the solution of
the free-electron Dirac equation, by arriving at the equation

uS =

[
cσ · p

E +mec2

] [
cσ · p

E −mec2

]
uS (114)

and thus postulating that [
cσ · p

E +mec2

] [
cσ · p

E −mec2

]
= 1 (115)

in order to guarantee consistancy. The latter equation allows us then to determine
the energy E, which is shown in Eq. (113).

Dirac Velocity Operator [Eq. (298)]

ẋk = cαk (116)

Derivation

1. The Dirac velocity operator is defined from the Heisenberg equation of motion

ẋk =
i

~

[
HD, xk

]
. (117)

Kinematic Momentum [Eq. (306)]
The connection of the canonical momentum operator p with the effect of external vector
potentials A on a moving electron with charge qe = −e is often simply written as

p→ p− qe
c
A = p +

e

c
A ≡ π . (118)

π is called the mechanical-momentum operator.
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Electromagnetic Interaction Operator [Eq. (308)]

i~
∂

∂t
Ψ = [cα · p + βmec

2 + qeφ− qeα ·A︸ ︷︷ ︸
≡V̂

]Ψ . (119)

Pauli Equation (Schrödinger Equation with Electromagnetic Fields) [Eq.
(317)]

1

2me

(
p− qe

c
A
)2

ΨL − qe~
2mec

(σ ·B)ΨL + VΨL = i~
∂

∂t
ΨL (120)

Derivation

1. Rewrite the notation for the Dirac electron in an external electromagnetic field by
using the split notation (Eq. (312) in the script).

2. Since the lowest possible nonrelativistic energy of a free particle is zero instead of
mec

2 in Schrödinger quantum mechanics, the origin of the energy scale needs to
be shifted by −mec

2.

3. Retrive the kinetic-balance condition by first working with the lower part of the
equation in split notation.

4. Inserting the kinetic-balance condition in the upper part and utilizing Dirac’s rela-
tion

(σ ·B)(σ ·B) = π2 − qe~
c
σ ·B (121)

yields the Pauli equation.

Kinetic-Balance Condition [Eq. (314)]

ΨS ≈ σ · π
2mec

ΨL (122)

Derivation

1. Rewrite the notation for the Dirac electron in an external electromagnetic field by
using the split notation (Eq. (312) in the script).

2. The lower part of this equation can be written as(
i~
∂

∂t
+ 2mec

2 − V
)

ΨS = c(σ · π)ΨL . (123)

3. For nonrelativistic energies, the energy E → i~ ∂
∂t and the potential V are small

compared to the rest energy mec
2, giving the kinetic-balance condition shown in

Eq. (122).
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Lecture 6: The Dirac Hydrogen Atom
Pauli Bispinors [Eqs. (337) and (338)]

χ
(+)
jmj

=

√
l +mj + 1/2

2l + 1
Φl(mj − 1/2) +

√
l −mj + 1/2

2l + 1
Φl(mj + 1/2) (124)

χ
(−)
jmj

= −
√
l −mj + 1/2

2l + 1
Φl(mj − 1/2) +

√
l +mj + 1/2

2l + 1
Φl(mj + 1/2) (125)

Derivation

1. The Dirac Hamiltonian for the fermions electron e and proton p plus the interaction
operator Vep yield the total Hamiltonian

H = hde ⊗ 1 + 1⊗ hDp + Vep . (126)

2. Transform the operator

hD =

(
mec

2 + V (r) cσ · p
cσ · p −mec

2 + V (r)

)
. (127)

to spherical coordinates (the diagonal is alread in spherical coordinates).

3. σ ·p is expanded by exploiting Dirac’s relation, resulting in an expression contain-
ing r · p and σ · l.

4. All angular variables are contained in (σ · l), which is essential the spin-orbit cou-
pling paramater known from the Pauli equation.

5. We will require the eigenstates and eigenvalues of the spin-orbit coupling operator
(σ · l).

Ansatz for the Spinor [Eq. (367)]

Ψi(r)→ Ψni κimj(i)(r) =

(
Pni κi (r)

r χκimj(i)(ϑ, φ)
Qni κi (r)

r χ−κimj(i)(ϑ, φ)

)
(128)

Derivation

1. Because of the general 2 × 2 block structure of the Hamiltonian hD, a suitable
ansatz for Ψ(r) is

Ψ(r) =

(
Fi(r)χjmj (ϑ, γ)
iGi(r)χ

′
jmj

(ϑ, γ)

)
, (129)

with Gi, Fi being the radial and χ... being the angular components.

2. Equivalence restriction: assign a single pair of radial functions Fnκ(r) and Gnκ(r)

to a given set of (2j + 1)-degenerate spherical spinors χ(±)
jmj

(ϑ, γ)

Giuseppe Accaputo 22 www.accaputo.ch

www.accaputo.ch


Advanced Quantum Chemistry (Autumn Semester 2015 · ETH Zürich)

Radial Density [Eq. (434)]

ρi(r) = P 2
ni κi(r) +Q2

niκi(r) (130)

Dirac Radial Equation [Eqs. (377) and (378)]

[V (r) +mec
2]Pi(r) + c~

[
− d

dr
+
κi
r

]
Qi(r) = EiPi(r) (131)

c~
[

d

dr
+
κi
r

]
Pi(r) + [V (r)−mec

2]Qi(r) = EiQi(r) (132)

Derivation

1. Rewrite the Dirac equation using the ansatz for the spinor shown in Eq. (129),
where we utilized the fact that Pauli spinors are eigenfunctions of k.

2. When (σ · r̂) operates on Pauli spinors χκmj (ϑ, γ), this results in

(σ · r̂)χκmj (ϑ, γ) = −χ−κmj (ϑ, γ) . (133)

Multiplying this equation from the left with (σ · r̂) and recalling Dirac’s relation
yields after multiplication by (−1)

−χκmj (ϑ, γ) = (σ · r̂)χ−κmj (ϑ, γ) . (134)

3. The Dirac equation can now be written as

hDΨi =

( {
(V +mce

2)Fi − c~
[

1
r

d
drr −

κi
r

]
Gi
}
χκimj(i){

c~
[

1
r

d
drr + κi

r

]
Fi + (V −mce

2)Gi
}

iχ−κimj(i)

)
!

= EiΨi (135)

4. Using the radial functions defined in Eq. (128) the equations take the simple
form shown in Eq. (132). As ordinary differential equations, they can be solved
analytically.

Ground State Energy of the Dirac Hydrogen Atom [Eq. (431)]

E0 = c2
√

1− Z2/c2 (136)
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Derivation

1. The expression for the energy eigenvalue is given by

E2Z
2e4

c2~2
=
[
m2
ec

4 − E2
]

(α+ nr)
2 (137)

=⇒ E± = ±mec
2

[
1 +

Z2e4

c2~2(α+ nr)2

]−1/2

(138)

with nr = 0, 1, 2, 3, · · · ∈ N0 being the radial quantum number

2. The principal quantum number n can be defined as

n = nr + |κ| = nr + j + 1/2 (139)

3. The energy eigenvalue in Eq. (138) for the electronic bound states in Dirac hydrogen-
like atom reads in Hartree atomic units

En|k| ≡ E+ = c2

1 +

(
Z/c√

κ2 − Z2/c2 + n− |κ|

)2

−1/2

(140)

4. For the pair (n, κ) = (1,−1) we get Eq. (136)

Lowest Exponent of the Series Expansion for Radial Functions [Eq. (452)]

α =
√
κ2 − v2

−1/(~2c2) =

{√
κ2 − Z2e4/(~2c2) for a point-like nuclei
|κ| for finite-size nuclei

(141)

Derivation

• The finite nucleus is usually approximated by some spherical distribution of the
positive charges (e.g. the homogeneously or uniformly charged sphere is a simple
model for the finite size of the nucleus)

1. The homogeneous electron-nucleaus potential energy operator is given by

Vhom(r) =

{
−Ze2

2R

[
3− r2

R2

]
; r ≤ R

−Ze2/r ; r > R
, (142)

where R may be understood as the size of the nucleus and outside of the nucleus
the ordinary Coulomb attraction governs the electron-nucleus interaction where
erf denotes the error function.
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2. The series expansion for the general electron-nucleus potential is defined as

Vnuc(r) = v−1r
−1 + v0 +O(r) (143)

with

v−1 =

{
−Ze2 for point-like nuclear charges
0 for finite-size nuclei

. (144)

3. The coefficients of the rα−1 term of the radial equation give

v−1

~c
a0 + (κi − α)b0 = 0 (145)

v−1

~c
b0 + (κi + α)a0 = 0 (146)

(147)

which finally yields Eq. (141).

Lecture 7: The Interaction of Two Electrons
The Gaunt Operator for Unretarded Interactions [Eq. (465)]

G0(1, 2) = −q1q2
α1α2

r12
= −q1q2

r12

4

~2

(
0 s1s2

s1s2 0

)
(148)

Derivation

1. According to the Dirac equation for an electron in external electromagnetic fields
(Eq. (106)) we should make an ansatz for the two-electron system including the
external potential energy, Vnuc, of resting nuclei with the vector and scalar poten-
tial felt by one electron and generated by the other, respectively.

2. The exact total wave function Ψ is a 16× 16 matrix defined as

Ψ(ct1, r1, ct2, r2) = ψ1(ct1, r1)⊗ ψ2(ct2, r2) . (149)

3. First issue: What to do with the two different time derivatives?

a) Solution: Adopt a single absolute time frame t1, t2 → t to remove the two
different time derivatives

4. Second issue: How are the scalar and vector potentials of the electrons to be cho-
sen?

• Solution:
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a) Study the unretarded classical scalar potential created by electron 2,

φ2,unret.(r1, r2) =
q2

r12
, (150)

which is in accord with the standard Coulomb law.

b) The unretarded expression for the corresponding vector potential of the
moving electron 2 is then given by

A2,unret.(r1, r2, ṙ2) =
ṙ2
c
φ2,unret. . (151)

c) According to the correspondence principle, the velocities ṙ1 and ṙ2 are
substituted by the Dirac velocity operators cα1 and cα2. The unretarded
electromagnetic potential operator then become

φ̂2,unret.(ri, rj) and Â2,unret.(ri, rj) = αi
qi
rij

(152)

d) Since the electromagnetic fields are no longer retarded, their effect is felt
instantaneously by both electrons at the same time, and we would count
the interaction twice for any instant of time in our absolute time frame.
Therefore, it is important to avoid double counting by dividing the terms
that carry the potentials by two.

e) The unretarded classical interaction energy is given by

V12 =
q1

q2

(
1− ṙ1 · ṙ2

c2

)
. (153)

If we now substitute the velocities by their quantum analogs we get

V̂12 =
q1q2

r12
(1−α1α2) , (154)

where the first term is the Coulomb operator and then the so-called Gaunt
operator as defined in Eq. (148).

The Breit Operator for Retarded Interactions [Eq. (467)]

B0(1, 2) = −q1q2

2

[
α1α2

r12
+

(r12 ·α1)(r12 ·α2)

r3
12

]
(155)

Derivation

1. The operator for the classical potential energy of the retarded interaction of the
two electrons can be obtained from the correspondence principle applied to Dar-
win’s approximation shown in Eq. (70), i.e., we choose the velocity operator ex-
pression ṙ→ cα and optain the Breit operator shown in Eq. (155).
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Lecture 8: First-Quantized Semi-Classical Relativistic
Many-Electron Theory
First-Quantized Electron Hamiltonian [Eq. (503)]

H ′el =

N∑
i

hD(i) +

N∑
i<j

g(i, j) + V0 , (156)

with the single one-electron external-field-free Hamiltonian hD(i) defined as

hD(i) = cαi · pi + (βi − 1)mec
2 + Vnuc(ri) (157)

and

V0 ≡
M∑
J<I

ZIZJe
2

|RI −RJ |
. (158)

Further, g(i, j) is the electron-electron repulsion operator. For the Dirac-Coulomb many-
electron Hamiltonian, it is defined as

g(i, j)→ VC(i, j) =
e2

|ri − rj |
. (159)

Instead, for the Dirac-Coulomb-Breit many-electron Hamiltonian it is given by

g(i, j)→ VC(i, j) +B0(i, j) =
e2

|ri − rj |
+B0(i, j) , (160)

where B0 is the Breit operator (the unretarded Gaunt interaction may be deployed in-
stead of B0(i, j)).

N-electron current density [Eq. (517)]

j ≡ 〈Ψ|cαρ̂r|Ψ〉 (161)

Derivation

1. Derive the current-density expression for the many-electron system according to
Ehrenfest’s theorem employing the many-electron Dirac-Coulomb-(Breit) Hamil-
tonian

∂

∂t
〈ρ̂r〉 =

i

~

〈[
N∑
i=1

(cαi · pi), ρ̂r

]〉
(162)
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2. By using the definition of the density operator ρ̂r shown in Eq. (91) and the fact
that the electrons are phyiscally indistinguishable, we may write

∂

∂t
〈ρ̂r〉 =

i

~
N
〈[
cα1 · p1), δ(3)(r1 − r)

]〉
. (163)

3. By substituting pi = −i~∇i, we may write the Ehrenfest equation now as

∂

∂t
〈ρ̂r〉 = −∇ · cN

〈
Ψ|α1δ

(3)(r1 − r)|Ψ
〉

. (164)

4. From the last equation we now obtain the most general form of a continuity equa-
tion for an N -electron system,

∂

∂t
〈ρ̂r〉 = −∇ · 〈Ψ|(cα)ρ̂r|Ψ〉 (165)

and thus define the N -electron current-density as shown in Eq. (161).

Energy Density Functional of the 4-Current [Eq. (509)]

Eel[j
µ] = T [jµ] + Vnuc[j

µ] + J [jµ] + Exc[j
µ] (166)

where T [jµ] is the kinetic energy functional, Vnuc[j
µ] is the external potential energy

of the interaction of the electronic 4-current jµ with all nuclei, and J [jµ] is the clas-
sical repulsion energy of the electrons, while Exc[j

µ] denotes the exchange-correlation
current-density function, which contains all quantum, i.e., exchange and correlation ef-
fects.

Four-Component Single-Determinant Density and Current Density [Eqs.
(518) and (519)]

ρSD(r) =
∑
i

ψ†i (r) · ψi(r) (167)

jSD(r) = c
∑
i

ψ†i (r) · α · ψi(r) , (168)

where SD denotes the case of a single Slater Determinant.

Four-Component Kohn-Sham Equation [Eq. (520)]

[
cα ·

(
p− qe

c
Aeff(r)

)
] + βmec

2 + qeφeff(r)
]
ψi(r) = εiψi(r) (169)
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Lecture 9: Atoms and Molecules
(Summary Based on Exercise 8)
Dirac-Hartree-Fock Equations
• The analog to the Hartree–Fock method in relativistic quantum chemistry is the

Dirac-Hartree-Fock (or Dirac–Fock) method.

• As in the nonrelativistic case, the many-electron Hamiltonian is a sum of one- and
two-electron operators and is given by

H =
N∑
i=1

hD(i) +
N∑
i=1

i−1∑
j=1

g(i, j) , (170)

where N denotes the number of electrons and hD(i) is the Dirac operator

hD(i) = cαi · pi + (βi − 14)mc2 −
M∑
A=1

ZA
RiA

14 , (171)

in which the sum runs over all M nuclei.

• The Dirac operator hD(i) requires the wave function to be a spinor with four com-
ponents.

• Within the Dirac-Hartree-Fock method, the wave function Ψ is approximated by a
slater determinant

Ψ = A(ψ1(r1)ψ2(r2) · · · · · ψ1(rN )) , (172)

where A is the antisymmetrizer, and the orbitals ψi(ri) are four-spinors.

Dirac-Hartree-Fock Equations in Two-Component Notation
• The Dirac Hamiltonian can be rewritten as

hD(i) =

(
V cσi · pi

cσi · pi (V − 2mec
2)

)
. (173)

• It is now reasonable to summerize the two upper scalar entries in the wave function
in terms of a two-spinor called large component ψL, and the two lower entries as a
two-spinor called small component ψS . Accordingly, the orbitals can be written as

ψi(ri) =

(
ψLi (ri)
ψSi (ri)

)
. (174)
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Dirac-Hartree-Fock-Roothaan Equations:
Relativistic Equivalent to the Roothan-Hall Equations
• The orbitals ψi(ri) can be expanded in the one-electron basis sets {φLa } and {φSa}

of the dimensions KL and KS , and with corresponding expansion coefficients cLia
and cSib,

ψi(ri) =

(
ψLi (ri)
ψSi (ri)

)
=

( ∑KL
a=1 c

L
iaφ

L
a (ri)∑KS

a=1 c
L
ibφ

L
b (ri)

)
. (175)

• The Dirac-Hartree-Fock-Roothaan equations are given by(
FLL FSL

FLS FSS

)
︸ ︷︷ ︸

Fock matrix

(
cLi
cSi

)
= εi

(
SLL 0

0 SSS

)
︸ ︷︷ ︸

Overlap matrix

(
cLi
cSi

)
(176)

⇐⇒ Fc = Scε (177)

Lecture 10: Decoupling Negative-Energy States:
Foldy-Wouthuysen and Douglas-Kroll-Hess
(Summary Based on Exercise 9)
Closed-form unitary transformation of the Dirac Hamiltonian
• The small components of the spinor are the reason for:

1. Unboundedness of the Dirac Hamiltonian, which leads to variational instabil-
ity.

2. Increased computational cost due to the increased basis-set size.

– Small-component basis can become almost twice as large as the large-
component basis.

• Solution: Block-diagonalize the Dirac Hamiltonian by a unitary transformation U ,

fbd = UfU † =

(
f+ 0
0 f−

)
, (178)

where f = hD + V and V represents any potential energy operator. Further, the
operators f+ and f− reproduce the entire energy spectrum without coupling the
large and small components.

– The spinor is also reduced by the unitary transformation, i.e.,

ψ̃ = Uψ =

(
ψ̃L

ψ̃S

)
, (179)
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with ψ̃S = 0 for class-I solutions and ψ̃L = 0 for class-II solutions, i.e., solu-
tions corresponding to positive-energy and negative-energy spinors, respec-
tively.

∗ The relation

ψS = XψL (180)

holds between the lower and upper components of the 4-spinor.

The Free-Particle Foldy-Wouthuysen Transformation
• Historically first attempt to achieve the block-diagonalization of the Dirac Hamil-

tonian hD is due to Foldy and Wouthuysen

• They derived a closed-form expression for both the unitary transformations and
the decoupled Hamiltonian for the case of a free particle

• The unitary operator of interest is given by

U0 =

(
1 σ ·Pp

−σ ·Pp 1

)
(181)

with

Ap =

√
Ep +mec2

2Ep
, Pp =

cp

Ep +mec2
, Rp ≡ αPp . (182)

• In the literature, many forms of this transformation can be found. An often em-
ployed representation of U0 is the exponential form given by

U0 = exp

{
β
α · p
p

ω(p)

}
(183)

with

U †0 = exp

{
−βα · p

p
ω(p)

}
(184)

Foldy-Wouthuysen Expansion in Powers of 1/c

• The free-particle Foldy-Wouthuysen transformation can be performed in closed
form even in the presence of a scalar potential V of any form,

f1 = U0(hD + V )U †0 = E0 + E1 +O1 , (185)
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with

E0 = βEp −mec
2 (186)

E1 = ApV Ap +ApRpV RpAp (187)

O1 = βAp[Rp, V ]Ap (188)

where E denotes a block-diagonal operator with LL and SS blocks, which is called
even, while O denotes an operator with entries on two off-diagonal LS and SL
blocks, which is called odd. Further, the subscripts denote the order in the scalar
potential of the corresponding term (e.g. E0 does not contain a scalar potential).

• The odd operator O1 hinders the exact decoupling.

• Though the Foldy-Wouthuysen procedure may formally be repeated until exact
decoupling seems to be achieved, the resulting even terms are highly singular and
ill-defined, and are not related to the original Dirac Hamiltonian at all.

• Failure of the higher-order Foldy-Wouthuysen transformation is that it relies on an
illegal 1/c expansion of all terms occuring in the free-particle Foldy-Wouthuysen
Hamiltonian f1 defined by Eq. (185).

– This step also requires to expand Ep, but such a power series expansion is,
however, only permitted for analytic functions and must never be extended
beyond a singular point.l

– For larger momenta, which arise in the vicinity of the nucleus and in a com-
plete basis set expansion, the series expansion up to any arbitrary or even
infinite order in p/mec does not represent the original function Ep, i.e. the
series does not even converge for these momenta.

– The singular behaviour of the series expansions of Ep becomes worse the
more terms of the expansion are taken into account.

• It follows that all 1/c-expansions are ill-defined and thus only Douglas-Kroll-Hess
expansions are possible for Dirac electrons in external fields!

Douglas-Kroll-Hess Transformation in V

• We need to remove the odd term O, since the free-particle transformation cannot
decouple potential-affected one-electron operators, which poses a problem molec-
ular quantum mechanics.

• Since the expansion in powers of 1/c (Foldy-Wouthuysen) is ill-defined, only the
expansion in the external potential V remains, which leads to the Douglas-Kroll-
Hess (DKH) transformation.

• Recall the result of the free-particle Foldy-Wouthuysen transformation:

f1 = U0(hD + V )U †0 = E0 + E1 +O1 , (189)

Giuseppe Accaputo 32 www.accaputo.ch

www.accaputo.ch


Advanced Quantum Chemistry (Autumn Semester 2015 · ETH Zürich)

with

E0 = βEp −mec
2 (190)

E1 = ApV Ap +ApRpV RpAp (191)

O1 = βAp[Rp, V ]Ap (192)

• After the initial transformation U0, the new odd part O1 in f1 needs to be deleted
by the next transformation U1, which can be done by introducing new odd terms
of higher order in the scalar potential V .

• The general DKH approximation is given by

hHDK1 =
∞∑
k=0

(
Ek 0
0 Ek

)
(193)

• The following DKH approximations have been presented during the lecture:

hHDK1 = E0 + E1 (194)

. . . (195)

hHDK5ichha =

5∑
i=1

Ei (196)

– DKH1 is no reliable approximation, but DKH2 is very accurate already

Lecture 11: Elimination Techniques: Pauli, Breit-Pauli, and
Zora
(Based on Exercises 10 and 11)
• The goal of elimination techniques is a straightforward and easy reduction of the

four-component one-electron equations to two-component form by elimination of
the two small components. This is achieved by exploiting the kinetic-balance con-
dition ΨS = XΨL.

Pauli Elimination
• A widely used operator to take into account relativistic effects is the Pauli Hamil-

tonian

hPauli =
p2

2me
+ V︸ ︷︷ ︸

Non-relativistic Hamiltonian hnr

− p4

8m3
ec

2︸ ︷︷ ︸
Mass-velocity operator hmv

(197)

+
~2

8m2
ec

2
(∆V )︸ ︷︷ ︸

Darwin term hDar

+
~

4m2
ec

2
σ · [(∇V )× p]︸ ︷︷ ︸

Spin-orbit coupling term hSO

(198)
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– The spin-orbit term can be cast in a more convenient form for a hydrogen-like
atom with a point-like nucleus so that the spin-orbit term hSO reads

hSO =
~

4m2
ec

2
σ · [(∇V )× p] =

Ze2

2m2
ec

2

s · l
r3

(199)

• Problem: The Pauli Hamiltonian is again a 1/c-expansion (see Eq. (205)), and
therefore cannot be used in variational procedures. This is due to the mass-velocity
term which leads to a strongly attractive potential for states with high moentum,
and would thus lead to variational collapse, since it is not bound from below.

– The problem cannot be remedied by going to higher orders, since the geo-
metric series expansion of ω given by Eq. (205) is only valid for

1− V − ε
2mec2

> 0⇐⇒ |V − ε| < 2mec
2 (200)

which is violated in regions close to the nucleus contributing.

– Also, the Darwin term produces difficulties as it degenerates to the singular
Delta distribution term in the case of a point-like nucleus.

Rough Derivation

• By exploiting the kinetic-balance condition ψS = XψL for the substitution of ψS ,
we get the two-component eigenvalue equation

(V + cσ · pX)ψL = εψL . (201)

• The energy-dependent X-operator

X =
cσ · p

2mec2 − V + ε
(202)

which yields the two component equation

(V − ε)ψL +
1

2mec2
[(cσ · p)ω(cσ · p)]ψL = 0 , (203)

with

ω =

[
1− V − ε

2mec2

]
. (204)

• For ω, the Pauli approximation is used (which is the first approximation used in
this approach; Eq. (203) still yields the exact Diract eigenvalues and large compo-
nents), which utilizes the properties of the geometric series

ω =

∞∑
k=0

V − ε
2mec2

k

(205)

that is truncated after the first two terms (k = 0, 1).
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• After applying some more changes and substitutions (e.g. using Dirac’s relation
and using the nonrelativistic Schrödinger equation to find an expression for a spe-
cific commutator; see lecture notes for more details), the nonrelativistic Hamilto-
nian p2/2me + V is recovered, and we find as correction terms the ones shown
in Eq. (198), i.e., the mass-velocity operator, the Darwin term, and the spin-orbit
coupling term.

Derivation of the spin-orbit term hSO:

1. For hydrogen-like atoms, the potential energy is given by

V =
−Ze2

r
. (206)

2. The gradient of V is then

∇V = −Ze2

(
∇1

r

)
= −Ze2

(
∇ 1√

x2 + y2 + z2

)
(207)

= Ze2

 x
y
z

 1

(x2 + y2 + z2)3/2
= Ze2 r

r3
. (208)

3. Following from this, we can write

hSO =
~

4m2
ec

2
σ · [(∇V )× p] =

Ze2~
4m2

ec
2

σ · [r× p]

r3
(209)

=
Ze2~
4m2

ec
2

σ · l
r3

Def. angul. mom.
=

Ze2

2m2
ec

2

s · l
r3

(210)

Lecture 15: Spin-DFT
(Based on Exercise 12)
• In the four-component DFT no spin is visible in the equations.

• The definition of the current density (Eq. (110)) involves a velocity operator (Eq.
(116)). The velocity operator turns out to be cα. Hence, as the Dirac α matrices
contain the Pauli spin matrices σ, it can be seen that the current density j carries
the spin information.

• The Gordon decomposition separates the current density into a charge- and spin-
related current.
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