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A B S T R A C T

Amorphous solids, like metallic glasses exhibit an excess of states in the low fre-
quency regime very close to the Boson peak, and the precise nature of these low
frequency vibrations remains unclear.

The purpose of this thesis is to investigate the use of a polynomial filtered eigen-
solver for the computation and study of low frequency eigenmodes of a Hessian
matrix located in a specific interval close to the Boson peak regime.

A distributed-memory parallel implementation of a polynomial filtered eigen-
solver is presented. Our implementation is then applied to Hessian matrices of
different atomistic bulk metallic glass structures derived from molecular dynamics
simulations for the computation of low frequency eigenmodes close to the Boson
peak region. In addition, we demonstrate the parallel scalability of our implemen-
tation on multicore nodes.

Our resulting calculations successfully concur with previous results [5], and
anomalous behavior of the particles in the region close to the Boson peak can
be observed from the data.
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1
I N T R O D U C T I O N

In condensed matter physics, an amorphous or disordered solid is a solid that
lacks the long-range order in the position of the atoms characteristic of a crystal.

For a crystal, vibrational excitations are understood in terms of quantized plane
waves, the phonons, and in the low frequency regime the vibrational modes are the
acoustic phonons. In the case of disordered solids, such as metallic glasses, it has
been shown that the majority of the vibrations are not plane waves. Propagative
modes, including plane waves are restricted to the low frequency regime, and
localized modes occupy the high frequency tail of the spectrum.

For various amorphous solids, an excess of low frequency vibrations as com-
pared to the Debye prediction has been observed. The origin of these modes in
excess is called the Boson peak, which historically has been measured via Raman
spectroscopy. At low frequencies and long wave-lengths, acoustic plane waves do
not interact with disorder, and thus can still propagate in disordered solids. Once
the frequency is increased beyond the Ioffe-Regel limit, the acoustic plane waves
interact with the disorder and are significantly scattered. This strong scattering
regime occurs around the Boson peak position, and the exact origin of this phe-
nomenon and its connection to the Boson peak is still debated.

Molecular dynamics simulations are able to produce metallic glasses. To decide
on the nature of a mode, the Hessian matrix — a square matrix of second-order
partial derivatives of the potential energy V — of such a generated system has to
be diagonalized. An analysis based on the computed eigenfrequencies and eigen-
vectors would tell whether a mode is a propagating plane wave or not.

In our case, the matrix of interest is the Hessian matrix H of atomistic bulk metal-
lic glass structures derived from molecular dynamics simulations using a binary
Lennard Jones pair potential [5]. For a system consisting of N atoms, the vibra-
tional modes of interest can be calculated by solving the real symmetric eigenvalue
problem defined by

Hui = λiui, H ∈ R3N×3N , ui ∈ R3N , i = 1, . . . , 3N , (1)

where λi = ω2
i with ωi being the fundamental frequency and ui is the eigenmode

or eigenvector representing the displacement of the particles in the system. Further,
the eigenvalues λi are arranged in ascending order, i.e. λmin = λ1 ≤ λ2 ≤ · · · ≤
λ3N = λmax.

We are interested in obtaining the significant portion of the long-wavelength
(low-frequency) vibrational eigenmodes close to the Boson peak, which will be
analyzed to investigate the relationship between the atomic-scale structure of the
metallic glass and the Boson peak regime. This task requires the computation of all
eigenvalues that are located in an interval close to the Boson peak region, including
the associated eigenvectors.

Extreme eigenvalue problems, where the interval of interest [ξ, η] is located at
the end of the spectrum, i.e., when ξ = λmin or η = λmax are handled rather well by
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2 introduction

most methods. The situation when [ξ, η] lies within the boundaries of the spectrum
is harder to solve in general and is called an interior eigenvalue problem.

The interval of interest close to the Boson peak region is located in an interior
region of the spectrum of the Hessian matrix H, and thus the problem stated in Eq.
(1) is an interior eigenvalue problem.

For a general diagonalizable square matrix A of dimensions n × n, a frequent
approach to obtain part of the spectrum in an interior interval is to apply the
Lanczos algorithm to a transformed matrix B = ρ(A), where ρ is either a ratio-
nal function or a polynomial. Nonetheless, the best known approach for interior
eigenvalue problems is based on a shift-and-invert approach, where the Lanczos
algorithm is applied to B = (A− σI)−1. σ is called the shift and is selected to point
to the eigenvalues in the interval of interest. With the shift-and-invert transforma-
tion, the eigenvalues of A closest to the shift σ are then mapped to the extreme
ones of B. Since we are working with an inverse matrix, shift-and-invert requires a
factorization of the matrix A− σI which is not always readily available and can be
rather expensive to compute in some cases. Polynomial filtering instead replaces
(A− σI)−1 by a polynomial ρ(A) such that all eigenvalues of A in [ξ, η] are trans-
formed into dominant eigenvalues of ρ(A).

The goal of this thesis is to investigate the usage of the polynomial filters pre-
sented in [12] combined with the thick-restart Lanczos algorithm to compute eigen-
values and corresponding eigenvectors in an interior interval of the spectrum of
the Hessian matrix H close to the Boson peak regime.

The thesis is organized as follows: Chapter 2 introduces the concept of polyno-
mial filters and explains the idea behind the thick-restart Lanczos algorithm. Chap-
ter 3 provides details about our implementation and the general parallelization of
our code. Next, in Chapter 4 results from interval-specific eigenpair computations
with Hessian matrices of large systems and various performance measurements
are discussed. Finally, the thesis ends with concluding remarks about our work
and results in Chapter 5, and an outlook on possible enhancements of our imple-
mentation based on the physical problem at hand is given.



2
B A C K G R O U N D

In the first part of this chapter we present the concept of least-squares polynomial
filters as presented in [12], and how it can be applied to filter unwanted eigenval-
ues outside of an interval of interest.

In the second part we introduce the thick-restart version of the Lanczos algo-
rithm, which later in this thesis will be combined with the polynomial filter for the
computation of interval-specific eigenpairs.

2.1 polynomial filtering

Polynomial filtering is a process by which a n × n real symmetric (or complex
Hermitian) matrix A is replaced by a function ρ(A), where the filter function ρ has
the property of filtering out unwanted eigenvalues.

Suppose we want to compute eigenvalues in the interval of interest [ξ, η] ⊂ [a, b],
where the interval [a, b] contains the complete spectrum of A. The polynomial
ρ(λ) is chosen in such a way that all eigenvalues of A in [ξ, η] are transformed
into dominant eigenvalues of ρ(A). Therefore, due to the nature of the Lanczos
algorithm the dominant eigenvalues of ρ(A) will be approximated first.

The polynomials ρ we are using in this work are least-squares approximations
to the Dirac-delta function using a series expansion based on Chebyshev polyno-
mials of the first kind [12]. In the following sections we summarize the concepts
presented by Li et al in [12].

2.1.1 Least-Squares Polynomial Filters

The Dirac-delta distribution is a generalized function that was introduced by Paul
Dirac for the representation of an idealized point object, such as a point mass or
point charge. It is a function that is equal to zero everywhere except for t = γ,
where it represents a spike that is infinitely high and the integral over the line is
equal to 1. In the approach presented in [12], the filter is a least-squares approxi-
mation to the Dirac-delta function.

The approximate polynomial ρk(t) of the Dirac-delta δγ centered at γ is realized
by expanding δγ as a degree k Chebyshev polynomial series defined as

ρk(t) =
k

∑
j=0

µjTj(t) (2)

with

µj =

 1
2 if j = 0

cos(j arccos(γ)) otherwise ,
(3)

3



4 background

where k is the degree of the polynomial and the Chebyshev polynomial Tj of the
first kind of order j is defined as

Tj(t) = cos(n arccos(t)), t ∈ [−1, 1], j = 0, 1, 2, . . . (4)

Since the Dirac-delta function is a distribution — and thus expanding it using Eq.
(2) may not be mathematically rigorous or permissible — the authors state with
[12, Proposition 3.1] that the polynomial defined as

ρ̂k(t) = ρk(t)/ρk(γ) (5)

is the polynomial that minimizes ‖r(t)‖w over all polynomials r of degree ≤ k,
such that r(γ) = 1, with ‖ · ‖w being the Chebyshev L2-norm.

If we want to apply the polynomial ρ̂k in Eq. (5) to the matrix A using the
Chebyshev polynomials as defined in Eq. (4), we need to map the eigenvalues of A
to the reference interval [−1, 1], which can be accomplished by using the following
linear map from [λmin, λmax] to [−1, 1]:

Â =
A− cI

d
with c =

λmax + λmin

2
, d =

λmax − λmin

2
. (6)

The extremal eigenvalues λmin and λmax of A used in Eq. (6) can be approx-
imated by lower and upper bounds obtained by adequate perturbations of the
largest and smallest eigenvalue, which can be computed by running a small num-
ber of iterations of the Lanczos algorithm.

2.1.1.1 Oscillations and Damping

The expansion of discontinuous functions will exhibit oscillations near the discon-
tinuities, which are known as Gibbs oscillations. To alleviate this behavior it is thus
usual to add smoothing coefficients gk

j so that Eq. (2) is replaced by

ρk(t) =
k

∑
j=0

gk
j µjTj(t) . (7)

These coefficients can be calculated by using different smoothing approaches.
Jackson smoothing [9, 14] is one of the best known approaches, and computes the
smoothing factors gk

j by using the formula

gk
j =

sin(j + 1)αk

(k + 2) sin αk
+

(
1− j + 1

k + 2

)
cos(j αk) with αk =

π

k + 2
. (8)

Another smoothing approach proposed by Lanczos [11, Chapter 4] is called σ-
smoothing and uses simpler smoothing coefficients:

σk
0 = 1, σk

j =
sin(jθk)

jθk
, j = 1, . . . , k, with θk =

π

k + 1
. (9)

Fig. 1 shows three polynomial filters ρ̂k of degree k = 11 for the interval [−0.2, 0.2],
one of which is without smoothing and the other two with Jackson damping or
the Lanczos σ-damping, respectively.
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Figure 1: Polynomial filters ρ̂k of degree k = 11 for the interval [−0.2, 0.2], using three
different smoothing approaches.

2.1.2 Choosing the Degree of the Filter

The degree of the polynomial filter ρ̂k is automatically computed based on the
defined interval of interest [ξ, η] ⊂ [λmin, λmax] and on the type of smoothing
coefficients to be used. The interval boundaries ξ and η are first transformed using
Eq. (6) to ξ̂ and η̂, respectively:

ξ̂ = (ξ − c)/d , (10)

η̂ = (η − c)/d . (11)

These transformations guarantee that ξ̂, η̂ ∈ [−1, 1]. The procedure then starts with
a low degree polynomial and increases k until the values of ρ̂k(ξ̂) and ρ̂k(η̂) both
fall below a certain threshold φ. Once this happens, we set τ = min{ρ̂k(ξ̂), ρ̂k(η̂)},
with τ < φ being a bar value that will be used in Section 2.1.3 to filter out unwanted
eigenvalues.

In Fig. 2 three scaled polynomial filters ρ̂k with different thresholds φ for the
interval [ξ̂, η̂] = [−0.1, 0.5] are shown. The dotted lines in Fig. 2 connect the point
ρ̂k(ξ̂) to ρ̂k(η̂). As we can recognize from the slope of the dotted line connecting
the two points, we have ρ̂k(ξ̂) 6= ρ̂k(η̂) which is not very helpful in selecting the
desired eigenvalues in the interval [ξ, η]. For this reason, in the next section a
balancing step is introduced, such that ρ̂k(ξ̂) = ρ̂k(η̂) is guaranteed.

2.1.3 Balancing the Filter

For the selection of eigenvalues λ in the interval of interest [ξ, η] it is desirable
to have a polynomial filter ρ̂k whose values at the transformed boundaries ξ̂ and
η̂ are the same. This is accomplished by moving the center γ of the Dirac-delta
function δγ away from the midpoint of the interval [ξ, η]. Once we have adjusted
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Figure 2: Polynomial filters ρ̂k (Eq. (5)) of different degrees k for the interval [ξ̂, η̂] =
[−0.1, 0.5], using three different thresholds φ and Jackson smoothing. The dot-
ted lines connect ρ̂k(ξ̂) to ρ̂k(η̂) for each polynomial filter, clearly showing
ρ̂k(ξ̂) 6= ρ̂k(η̂).

the center, and thus ρ̂k(ξ̂) = ρ̂k(η̂), determining if a computed eigenvalue θj of
ρ̂k(Â) corresponds to an eigenvalue λj in [ξ, η] becomes a simple task, namely: If
τ ≡ ρ̂k(ξ̂) = ρ̂k(η̂), then

λj ∈ [ξ, η] ⇐⇒ θj ≥ τ . (12)

Hence, finding all eigenvalues λj ∈ [ξ, η] can be accomplished by finding all eigen-
values θj of ρ̂k(Â) that are greater than or equal to τ. It is important to mention
that this step is only used as a preselection tool. The matrix A and ρ̂k(Â) share the
same eigenvectors u1, u2, . . . , un [7]. Thus, once all eigenpairs (θj, uj) with θj ≥ τ

have been computed, we can use the corresponding eigenvectors uj to extract the
eigenvalues of A in [ξ, η] by first evaluating the Rayleigh quotient

λ̃j = uT
j Auj , (13)

and then check if λ̃j ∈ [ξ, η].
To adjust the center γ such that ρ̂k(ξ̂) = ρ̂k(η̂), the polynomial ρk from Eq. (7) is

first written in terms of the variable θt = arccos(t), i.e.

ρk(cos(θt)) =
k

∑
j=0

gk
j cos(jθγ) cos(jθt) . (14)

Newton’s method is then used to solve the equation

ρk(cos(θξ̂))− ρk(cos(θη̂)) = 0 (15)

with respect to θγ. Since cos(jθγ) = µj in Eq. (14), with µj being defined in Eq. (3),
it is important to note that the first smoothing coefficient gk

0 is multiplied by 1/2
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to simplify notation, meaning that the first term with j = 0 is not 1 but rather 1/2.
Using this notation and Eq. (14), Eq. (15) can be rewritten as

f (θγ) ≡ ρk(cos(θξ̂))− ρk(cos(θη̂))

=
k

∑
j=0

gk
j cos(jθγ))[cos(jθξ̂)− cos(jθη̂))] = 0 . (16)

Next, Newton’s method requires the first derivative of f with respect to θγ,
which is given by

f ′(θγ) = −
k

∑
j=0

gk
j j sin(jθγ)[cos(jθξ̂)− cos(jθη̂)] . (17)

Further, the authors of [12] provide a good initial guess with a mid-angle defined
as

θc =
1
2
(θξ̂ + θη̂) , (18)

which often yields convergence of the Newton iteration in one or two steps. Still,
in some cases (e.g. for low degree polynomials) Newton’s method may fail to
converge in two steps, and in these cases the roots of Eq. (16) are computed exactly
by solving the eigenvalue problem given by

1
2

Ct = γt , (19)

where

C =



0 2

1 0 1

1 0 1
. . . . . . . . .

1 0 1

−β0 −β1 . . . . . . 1− βk−2 −βk−1


(20)

is a Hessenberg matrix in Rk×k, β j is defined as

β j =
gk

j [cos(jθξ̂ − cos(jθη̂))]

gk
k[cos(kθξ̂ − cos(kθη̂))]

, (21)

and t has components tj = cos(jθγ) = Tj(γ) (see [12, Appendix A] for a detailed
derivation). The new center γnew is then taken to be the eigenvalue of C/2 that is
closest to the value cos(θc).

Fig. 3 shows three balanced polynomial filters ρ̂k for the interval [ξ̂, η̂] = [−0.1, 0.5].
In Fig. 2 the same interval has been used to compute the polynomials ρ̂k without
the balancing step. By comparing the dotted lines in Fig. 3 to the ones in Fig. 2, we
can see that for all balanced polynomial filters shown in Fig. 3 ρ̂k(ξ̂) = ρ̂k(η̂) = τ

holds. Further, by comparing the value of each γ in both Figs. 2 and 3, respectively,
we can see that in Fig. 3 the new midpoint γ of each approximated Dirac-delta
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function has been moved away from the previous midpoint, thus yielding balanced
polynomials.

In Fig. 4 the polynomial filters for the end interval [ξ̂, η̂] = [0.75, 1] are shown.
The Dirac-delta function is now centered at γ = 1. Since [ξ̂, η̂] is a right-end interval
of [−1, 1], only the bar value τ = ρ̂k(ξ̂) is needed to discard unwanted eigenvalues.
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Figure 3: Polynomial filters ρ̂k (Eq. (5)) of different degrees k for the interval [ξ̂, η̂] =
[−0.1, 0.5], using three different thresholds φ and Jackson smoothing. Each poly-
nomial filter has been balanced such that ρ̂k(ξ̂) = ρ̂k(η̂) = τ (dotted lines).

2.2 the thick-restart lanczos algorithm

We present a general description of the thick-restart version of the Lanczos algo-
rithm for the computation of extremal eigenvalues [18]. Although the eigensolver
is going to be applied to the matrix ρ̂k(Â) in our work, throughout this section we
are going to work with a Hermitian matrix denoted by B to keep the description
of the algorithm as general as possible.

The Lanczos algorithm [10] is an iterative algorithm applicable to the eigenvalue
problem

Bx = λx , (22)

where B is Hermitian, or in the real case a symmetric matrix operator.
The algorithm starts with a unit vector q1 and builds a sequence of vectors

q1, q2, . . . , qm ∈ Cn which form an orthonormal basis of the Krylov subspace

Km(B, q1) = span {q1, B q1, . . . , Bm−1 q1} . (23)

At each step i, the vector Bqi is orthogonalized against qi and (when i > 1)
against qi−1 by a Gram-Schmidt process:

βi+1qi+1 = Bqi − αiqi − βiqi−1 . (24)
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Figure 4: Polynomial filters ρ̂k (Eq. (5)) of different degrees k for the interval [ξ̂, η̂] =
[0.75, 1], using three different thresholds φ and Jackson smoothing. Each poly-
nomial filter has been balanced such that ρ̂k(ξ̂) = τ (dotted lines).

In theory, i.e. with exact arithmetic, this three-term recurrence computes an or-
thonormal basis {q1, . . . , qm} of Km(B, q), but in the presence of rounding, orthog-
onality between the qi’s is lost soon after at least one eigenvector starts converging.
A remedy to this problem is to reorthogonalize the vectors when needed, such
that the orthogonality among the qi’s to working precision is enforced. The m-step
Lanczos algorithm is shown in Algorithm 1, in which Qj ≡ [q1, . . . , qj] contains
the basis constructed up to step j as its column vectors and a reorthogonalization
step is included on Line 7 in Algorithm 1.

In the new orthonormal basis Qm the operator B is represented by the real sym-
metric tridiagonal matrix

Tm =


α1 β1

β1 α2
. . .

. . . . . . βm−1

βm−1 αm

 , (25)

where the scalars αi, βi are those produced by the Lanczos algorithm. Eq. (24) can
be rewritten in the form

BQm = QmTm + βm+1qm+1eH
m , (26)

where em is the mth column of the canonical basis and qm+1 is the last vector
computed by the Lanczos algorithm at step m.

Let (θ(m)
i , y(m)

i ) be the eigenpair of Tm at the mth step of the process. The eigen-

values θ
(m)
i are called Ritz values and will approximate some of the eigenvalues

of B as m increases. The vectors u(m)
i = Qmy(m)

i , known as Ritz vectors, will ap-
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Algorithm 1 The m-step Lanczos algorithm

1: Input: A Hermitian matrix B ∈ Cn×n, and an initial unit vector q1 ∈ Cn.

2: q0 = 0, β1 = 0

3: for i = 1, 2, . . . , m do

4: w = Bqi − βiqi−1

5: αi = qH
i w

6: w = w− αiqi

7: Reorthogonalize: w = w−Qi(Q
H
i w)

8: βi+1 = ‖w‖2

9: if βi+1 = 0 then

10: qi+1 = a random vector of unit norm that is orthogonal to q1, . . . , qi

11: else

12: qi+1 = w/βi+1

proximate the related eigenvectors of B. The Ritz pair (θ
(m)
i , u(m)

i ) will be a good
approximation to an eigenpair of B if the residual norm

‖r‖ = ‖Bui − θiui‖ (27)

is less than a prescribed threshold. Further, the Lanczos algorithm yields good
approximations to extreme eigenvalues of B rather fast, whereas convergence to
eigenvalues located deep inside the spectrum is much slower.

A disadvantage of the Lanczos algorithm is the fact that there is no way to
determine in advance how many steps will be needed. In many cases, convergence
to the eigenvalues of interest within a specified accuracy will not occur until the
number of iterations m gets very large. Maintaining the orthogonality of such large
bases becomes expensive and even intractable for large m.

To help maintain orthogonality and thus minimize the costs caused by reorthog-
onalizing the bases, the dimension of the search space is limited and restarting
schemes are introduced. Restarting means that the starting vector q1 is replaced
with an improved vector q∗1 (a Ritz vector computed during the previous itera-
tions) and a new Lanczos decomposition with the new vector is computed. In the
case of a thick restart, the algorithm is restarted not with one but with multiple
Ritz vectors.

In the following we recall the steps from [12] for extending the standard Lanczos
method shown in Algorithm 1 to the thick-restart Lanczos method as defined by
Wu and Simon [18].

Suppose that after m steps of the Lanczos algorithm we have l Ritz vectors
u1, u2, . . . , ul . We wish to use these Ritz vectors along with the last vector qm+1
as restarting vectors. From [15, Proposition 6.8] we know that each Ritz vector ui
has a residual in the direction of qm+1, i.e.

(B− θiI)ui = (βm+1eH
m yi)qm+1 ≡ siqm+1 for i = 1, . . . , l . (28)
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By defining q̂i = ui and q̂l+1 = qm+1 and rewriting Eq. (28) in matrix form, it
follows that

BQ̂l = Q̂lΘl + q̂l+1sH , (29)

where Q̂l = [q̂1, . . . , q̂l], Θ̂l = diag(θ1, . . . , θl), and sT = [s1, . . . , sl ].
To compute the (l + 2)th basis vector q̂l+2, we compute Bq̂l+1 and orthonormal-

ize it against the previous l + 1 basis vectors:

βl+2q̂l+2 = Bq̂l+1 −
l

∑
i=1

siq̂i − αl+1q̂l+1 , (30)

where αl+1 = q̂l+1
HBq̂l+1.

After completing the first step after the restart, the following equation holds:

BQ̂l+1 = Q̂l+1T̂l+1 + βl+2q̂l+2eH
l+1 with T̂l+1 =

(
Θ̂l s

sH αl+1

)
. (31)

The algorithm now proceeds just like the Lanczos algorithm, i.e., q̂k for k ≥ l + 3
is computed until the dimension reaches m. Selecting which Ritz pairs (θj, uj =

Qmyj) the algorithm should keep for the restart can be based on different heuristic
schemes; we refer to [18, 19] for a few examples and further details.

The thick-restart Lanczos algorithm is sketched in Algorithm 2. A detailed de-
scription of the thick-restart Lanczos method can be found in Wu and Simon [18].
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Algorithm 2 Thick-restart Lanczos algorithm

1: Input: A Hermitian matrix B ∈ Cn×n and an initial unit vector q1 ∈ Cn.

2: q0 = 0, β1 = 0, Its = 0, lock = 0, U = [ ]

3: while Its ≤ MaxIts do

4: if l > 0 then

5: Perform thick restart step (30), which results in Q̂l+2 and T̂l+1 in (31)

6: for i = l + 1, . . . , m do

7: w = Bqi − βiqi−1

8: αi = qH
i w

9: w = w− αiqi

10: Reorthogonalize: w = w−Qi(Q
H
i w)

11: βi+1 = ‖w‖2

12: if βi+1 = 0 then

13: qi+1 = a random vector of unit norm that is orthogonal to q1, . . . , qi

14: else

15: qi+1 = w/βi+1

16: Set Its = Its + 1

17: Results: Qm ∈ Cn×m and Tm ∈ Rm×m.

18: Compute all eigenpairs (θj, yj) of Tm and the norm of the corresponding
residuals defined in Eq. (28)

19: if the norm of all residuals is smaller than a prescribed threshold then

20: return the Ritz pairs (θj, uj = Qmyj) of interest (smallest or largest magni-
tude of θj)

21: else

22: Select which vectors of the current basis should be used at the next restart
based on a heuristic scheme, e.g. [18, 19]
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I M P L E M E N TAT I O N

In this chapter we combine the methods from Chapter 2 and a few other useful
tools into a utility that can be used to compute the eigenpairs of a n × n real
symmetric (or complex Hermitian) matrix A within a specified interval of interest
[ξ, η] in parallel by simply providing an XML configuration file (see A.1). The
outline of the utility can be found in Algorithm 3.

In Section 3.1 we first introduce Trilinos, the workhorse behind the numerical
work done by the utility. Next, in Section 3.2 we give some details about the distri-
bution pattern used throughout our implementation for the distributed-memory
parallel computations. Finally, in the remaining sections we explain the ideas and
implementation details behind most of the steps in Algorithm 3.

Algorithm 3 The BosonPeak Utility

1. Import user-specified configuration via XML file (see A.1).

2. Import the matrix A.

3. If requested, estimate the extremal eigenvalues λmin, λmax of A using a small
number of Lanczos steps.

4. Transform the matrix A to Â based on Eq. (6).

5. If requested, estimate the number of eigenvalues in the specified interval [ξ, η].

6. Compute the polynomial filter ρ̂k using Algorithm 4.

7. Compute the eigenpairs (λ̃j, uj) of the matrix A with λ̃j ∈ [ξ, η] and residual
norms rj = ‖Auj − λ̃juj‖ using Algorithm 6

8. If requested, write the eigenvalues λ̃j, eigenvectors uj and residual norms rj in
the MatrixMarket (MM) format to the hard disk.

3.1 trilinos

The utility is written in C++11 and uses Trilinos1 extensively, a collection of open-
source software libraries, called packages, for the development of scientific applica-
tions.

1 https://trilinos.org/

13

https://trilinos.org/
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3.1.1 Epetra

The Epetra2 package provides classes for the construction and use of serial and dis-
tributed parallel linear algebra objects, and many of the Trilinos solver packages
work with Epetra objects. The most used linear algebra objects in our implementa-
tion are sparse, Compressed Row Storage (CRS) matrices, and collections of dense
vectors called multivectors. An Epetra_CrsMatrix object stores a sparse matrix in
the CRS format with real-valued double-precision entries. An Epetra_MultiVector

object instead stores each vector in a multivector as a contiguous array of double-
precision numbers. Both objects are extensively used for sparse matrix-vector mul-
tiplications in the various Trilinos solver packages.

3.1.2 Anasazi

Anasazi3 is a package that offers a collection of algorithms for solving large-scale
eigenvalue problems. As part of the package it provides solver managers to imple-
ment a strategy for solving an eigenvalue problem.

3.1.3 Teuchos

The Teuchos package is a collection of common tools used throughout Trilinos.
Among other things, it provides templated access to BLAS and LAPACK inter-
faces, parameter lists that allow to specify parameters for different packages, and
memory management tools for aiding in correct allocation and deletion of mem-
ory.

Part of the memory management tools is an implementation of a Reference
Counting Pointer (RCP) class, which for an object tracks a count of the number
of references to it held by other objects. Once the counter reaches zero, the object
can be destroyed. The advantage of a RCP is that the possibility of memory leaks
in a program can be reduced, which is especially important when working with
rather large objects, e.g. an Epetra_CrsMatrix object storing over 109 nonzero entries.
RCP objects are heavily used throughout our implementation to manage large ob-
jects, especially large temporary objects that are only needed during a fraction of
the whole computation.

3.2 parallelization

Trilinos supports distributed-memory parallel computations through the Message
Passing Interface (MPI). Both the Epetra_CrsMatrix and the Epetra_Multivector ob-
jects can be used in a distributed memory environment by defining data distribu-
tion patterns using Epetra_Map objects.

The entries of a distributed object (such as rows or columns of a Epetra_CrsMatrix

or the rows of a Epetra_Multivector) are represented by global indices uniquely over
the entire object. A map essentially assigns global indices to available MPI ranks
(further referred to as only ranks), which in our case a single rank corresponds —

2 https://trilinos.org/packages/epetra/

3 https://trilinos.org/packages/anasazi/

https://trilinos.org/packages/epetra/
https://trilinos.org/packages/anasazi/
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but in general is not limited — to a single core on a processor. For example, if the
map assigns the global row index i of a sparse matrix to a rank p, we say that the
rank p owns the global row index i. Within a rank, we refer to a global index using
a local index. In the specific example of a global row index i, this means that a rank
p can access the local data of the global row i it owns by using the local index l(i),
where the function l maps the global index i to a local index for the specific rank.

For the addressing, local and global indices in Epetra use by default a 32-bit int
type. Since our implementation is based on the C++11 language standard and we
want to allow computations with large matrices, we explicitely use 64-bit global
indices of type long long when working with distributed linear algebra objects.

An Epetra_Map object enapsulates the details of distributing data over MPI ranks.
In our implementation, we use contiguous and one-to-one maps for the distribution
of the rows of Epetra_CrsMatrix and Epetra_MultiVector objects. Contiguous means
that the list of global indices on each MPI rank forms an interval and is strictly
increasing. A one-to-one map instead allows a global index only to be owned by
a single rank. For the columns, the distribution pattern we are using distributes
the complete set of global column indices for a given global row, meaning that if
a rank p owns the global row index i, it also owns all global column indices j on
that row, thus having local access to the global entry (i, j). The map used for the
distribution of the columns is thus not a one-to-one map, since a global column
index can be owned by multiple ranks.

0

1

2

3

4

5

Figure 5: Row-wise distribution pattern of a matrix A ∈ R6×6 using 3 MPI ranks.

As an illustrative example we distribute the following 8 × 8 sparse matrix A
over 4 ranks using the previously specified distribution pattern for the rows and
columns, respectively:
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A =



1 2 0 0 5 0 0 7

0 0 0 4 0 2 3 1

10 0 11 0 0 100 0 0

0 0 0 120 13 0 0 0

0 0 0 0 0 1 3 4

77 0 18 0 0 0 0 6

10 20 55 0 0 0 0 0

0 0 0 0 11 153 131 0


(32)

The distribution of the matrix A over the 4 ranks looks as follows:

• Rank 0:

– Global row indices owned: {0, 1}
– Global column indices owned: {0, 1, 3, 4, 5, 6, 7}
– Global entries locally accessible:
{(0, 0), (0, 1), (0, 4), (0, 7), (1, 3), (1, 5), (1, 6), (1, 7)}

• Rank 1:

– Global row indices owned: {2, 3}
– Global column indices owned: {0, 2, 3, 4, 5}
– Global entries locally accessible:
{(2, 0), (2, 2), (2, 5), (3, 3), (3, 4)}

• Rank 2:

– Global row indices owned: {4, 5}
– Global column indices owned: {0, 2, 5, 6, 7}
– Global entries locally accessible:
{(4, 5), (4, 6), (4, 7), (5, 0), (5, 2), (5, 7)}

• Rank 3:

– Global row indices owned: {6, 7}
– Global column indices owned: {0, 1, 2, 4, 5, 6}
– Global entries locally accessible:
{(6, 0), (6, 1), (6, 2), (7, 4), (7, 5), (7, 6)}

Now that the data is distributed, each rank can start to work on the owned
global matrix entries. For this, the ranks need the local indices to the owned rows
and columns. This is accomplished by using a mapping function l(i) that maps a
global index i to a local one. A specific rank can then use the local indices to locally
access the owned global entries. An example of such a mapping is shown for the
global indices on rank 3:

• Rank 3:
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– Local row indices: l(4) = 0, l(5) = 1

– Local column indices:
l(0) = 0, l(2) = 1, l(5) = 2, l(6) = 3, l(7) = 4

Rank 3 can now use the local indices to access the data. For example, by locally
setting A(l(5), l(7)) = 49, the global entry A(5, 7) gets the value 49 set. These
changes to the structure of an Epetra_CrsMatrix object have to be committed via
a call to the FillComplete function, which for one helps construct communication
patterns to support distributed sparse matrix-vector multiplications.

3.3 parallel matrix import

The matrix import implemented in the utility allows to efficiently import large ma-
trices stored in a Hierarchical Data Format 5 (HDF5)4 file directly to a Epetra_CrsMatrix

object.
HDF5 is a data model, library, and file format for storing and managing data

collections of all sizes and complexity. One of the advantages of using the HDF5

format to store and import large matrices is the possibility to use MPI to read the
HDF5 files in parallel. For this reason Trilinos provides the EpetraExt::HDF5 class
for importing a matrix stored in a HDF5 file to a Epetra_CrsMatrix.

Since the EpetraExt::HDF5 class currently does not provide an import function
for matrices with 64-bit global indices of type long long, we extended the class
by a function suitable for working with 64-bit data. Further, because some of the
matrices may be delivered in the MM format, in a preprocessing step a Python
script can be used to convert the matrices stored in the MM format to a HDF5 file
suitable for the import (see Appendix A.3).

3.4 estimation of the extremal eigenvalues of A

For the transformation of A to Â, as shown in Eq. (6), we need to specify a value for
the extremal eigenvalues λmin and λmax of A. In case we want to approximate the
extremal eigenvalues, we simply run a small number of Lanczos iterations (e.g. 10
iterations in our case) for the approximation of the required extremal eigenvalues
denoted by λ̃min and λ̃max, respectively.

In case the Lanczos method manages to return converged eigenvalues by only
running a few iterations, we use λmin = λ̃min and λmax = λ̃max. In situations
where the computation of the extremal eigenvalues does not converge, we simply
subtract (when approximating λmin) or add (when approximating λmax) a small
perturbation from the approximated eigenvalues by using

λmin = λ̃min − p · |λ̃min| , (33)

λmax = λ̃max + p · |λ̃max| , (34)

where p� 1 is a small perturbation factor.

4 https://support.hdfgroup.org/HDF5/

https://support.hdfgroup.org/HDF5/
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3.5 estimation of the eigenvalue count in a specified interval

The estimation of the number of eigenvalues located in a given interval is com-
puted by approximating the trace of an eigenprojector [6]. This estimation will
be later needed (on Line 7 of Algorithm 3) to specify how many of the largest
eigenvalues of ρ̂k(Â) the eigensolver specified in Algorithm 6 should compute and
return. In the following we give a summary of the technique as presented by Di
Napoli et al in [6].

Let λj, j = 1, . . . , n be the eigenvalues and u1, u2, . . . , un the associated orthonor-
mal eigenvectors of our real, symmetric (or complex Hermitian) matrix A. For a
specified interval [ξ, η], with λmin ≤ ξ < η ≤ λmax, our aim is to count the number
of eigenvalues λi in the interval [ξ, η]. We estimate the eigenvalue count by seeking
an approximation of the trace of the eigenprojector

P = ∑
λi∈[ξ,η]

uiuT
i . (35)

Since the eigenvalues of a projector are either zero or one, the trace of P in Eq.
(35) is equal to the number of eigenvalues in [ξ, η]. Thus, the number of eigenvalues
µ[ξ,η] located in the interval [ξ, η] can be calculated by evaluating the trace of the
projector in Eq. (35):

µ[ξ,η] = tr(P) . (36)

Considering that the projector P is typically not available, we approximate it in
the form of a polynomial function of A. For this, we can interpret P as a character-
istic function of the interval [ξ, η]:

P = h(A) where h(t) =

1 if t ∈ [ξ, η] ,

0 otherwise
(37)

In our case, we approximate h(t) with a finite sum ψ(t) of Chebyshev polyno-
mials, namely P ≈ ψ(A). Further, we estimate the trace of P using Hutchinson’s
unbiased estimator [8]. Hutchinson showed that given a general matrix A and a
randomly generated vector v with identically independently distributed (i.i.d.) ran-
dom variables as entries, the equation E(vTAv) = tr(A) holds. Thus, the idea
behind the estimator is to compute an estimate Tnv of the trace tr(A) by generating
nv samples of random vectors vk, k = 1, . . . , nv and then computing the average of
vT

k Av over these samples:

tr(A) ≈ Tnv =
1
nv

nv

∑
k=1

vT
k Av . (38)

Hutchinson originally used i.i.d. Rademacher random variables, whereby each
entry of v assumes the values −1 or 1 with probability 1/2. In general, any se-
quence of random vectors vk whose entries are i.i.d. random variables can be used,
as long as the mean of their entries is zero [2]. In our case, we used a Gaussian
estimator to compute Tnv in Eq. (38) by using normally distributed variables for
the entries of the random vectors vk. Despite the fact that the Gaussian estimator
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has a larger variance than that of Hutchinson, it shows better convergence in terms
of the number of sample vectors nv [1].

The trace of P can now be computed as

µ[ξ,η] = tr(P) ≈ n
nv

nv

∑
k=1

vT
k ψ(A)vk , (39)

where the sample vectors vk ∈ Rn are normalized to one ‖vk‖ = 1 and the factor
n is introduced by this constraint.

Using the polynomial filtering approach, the step function h(t) in Eq. (37) is
expanded into a degree p Chebyshev polynomial series:

h(t) ≈ ψp(t) =
p

∑
j=0

γjTj(t) , (40)

where Tj are the j-degree Chebyshev polynomials of the first kind, and the coef-
ficients γj are the expansion coefficients of the step function h, which are defined
as

γj =

 1
π (arccos(a)− arccos(b)) if j = 0 ,
2
π

(
sin(j arccos(a))−sin(j arccos(b))

j

)
if j > 0 .

(41)

Following the definition of h in Eq. (40) and by using the transformed matrix Â
from Eq. (6), we obtain an expansion of the projector P by defining

P ≈ ψp(Â) =
p

∑
j=0

γjTj(Â) , (42)

where the transformation to Â is needed to ensure that the eigenvalues of Â lie
in the reference interval [−1, 1] on which the Chebyshev polynomials are defined.
Next, we need to take care of Gibbs oscillations at the boundaries, since we are
trying to approximate the discontinuos function h in Eq. (37). For this reason the
Jackson damping coefficients gp

j are introduced using Eq. (8), and Eq. (42) is re-
placed by

P ≈ ψp(Â) =
p

∑
j=0

gp
j γjTj(Â) . (43)

Combining Eqs. (42) and (39) finally yields the following estimate

µ[ξ,η] = tr(P) ≈ n
nv

nv

∑
k=1

[
p

∑
j=0

gp
j γj vT

k Tj(Â)vk

]
. (44)

The advantage of this approach is that it requires only matrix-vector products.
Further, the vectors wj = Tj(Â)v for a given v can be computed using the three-
term recurrence relation of Chebyshev polynomials

Tj(t) = 2 t Tj−1(t)− Tj−2(t) with T0(t) = 1 and T1(t) = t , (45)
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which results in

wj = 2 Â wj−1 −wj−2 with w0 = T0(Â) v = v and w1 = T1(Â) v = Âv .
(46)

In our implementation, by default we use nv = 40 and a polynomial degree
p = 100 for the estimation of the eigenvalue count µ[ξ,η] with Eq. (44).

3.6 computation of the polynomial filter ρ̂k

Algorithm 4 contains the needed elements for the computation of the polynomial
filter ρ̂k as defined by Eqs. (5) and (7). The algorithm incorporates the ideas pre-
sented in Section 2.1 and is mostly based (with some minor adaptions) on the
EigenValues Slicing Library [16] developed by Saad et al.

Simply put, Algorithm 4 tries to compute a suitable polynomial filter ρ̂k for the
interval [ξ, η] by iterating through the degrees k = kmin, kmin + 1, . . . , kmax and
checking if the polynomial ρ̂k evaluated at the transformed boundaries ξ̂, η̂ falls
below the specified threshold φ. Once this is the case, the algorithm returns the
optimal degree k of ρ̂k, the center γ such that ρ̂k(γ) = 1, and the set of normalized
expansion coefficientsN = {ν̂k

0 , ν̂k
1 , . . . , ν̂k

k}with ν̂k
j being the normalized expansion

coefficient defined as

ν̂k
j = gk

j µj/ρk(γ) . (47)

These parameters can then be used to construct the optimal polynomial filter ρ̂k:

ρ̂k(t) =
k

∑
j=0

ν̂k
j Tj(t) . (48)

Further, the bar value τ = min(ρ̂k(ξ̂), ρ̂k(η̂)) with τ < φ is returned, which will be
needed to filter out unwanted eigenvalues θj of ρ̂k(Â) by simply checking if θj < τ.
For the threshold φ, in our implementation we use by default φ = 0.9 for interior
intervals and φ = 0.6 for end intervals.

Although the smoothing approach can be specified as an input parameter in Al-
gorithm 4, in case [ξ, η] is an end interval we explicitly use only Jackson-smoothed
polynomial filters. Additionally, we first try to use a degree-one Jackson-smoothed
polynomial filter ρ̂1(t) = ρ1(t)/ρ1(γ), with ρ̂1 defined as

ρ̂1(t) = gk
0µ0T0(t) + gk

1µ1T1(t) . (49)

In cases where the end interval is rather large, ρ̂1 suffices to filter out the un-
wanted eigenvalues. Further, using ρ̂1 in such a situation helps to better split the re-
gion containing the wanted eigenvalues from the region containing the unwanted
eigenvalues. Fig. 6a shows a degree-one polynomial filter ρ̂1 for the end interval
[ξ̂, η̂] = [−0.5, 1]. In Fig. 6b, a degree-two polynomial is shown for the same end
interval. The approach shown in Fig. 6b is problematic for discarding eigenvalues
using the bar value τ during the preselection step, since at the left boundary of
the interval [−1, 1] we can see that ρ̂k(−1) > τ, despite λ̂ = −1 being outside of
the interval of interest. Still, even if we would use the approach shown in Fig. 6b,
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once we compute the eigenpair (ρ̂k(−1), ul) of ρ̂k(Â) using the Lanczos method,
in a next step the eigenvalue λ̃l = uT

l Aul would be rejected due to λ̃l 6∈ [ξ, η]. Al-
though feasible, the approach in Fig. 6b is rather unfavorable compared to Fig. 6a,
since the computation of a much larger number of eigenvalues of ρ̂k(Â) would be
needed to capture all eigenvalues λ̂ ∈ [ξ, η] during the preselection, thus requiring
the eigensolver to construct a much larger Krylov basis as actually needed.
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(a) Polynomial filter ρ̂k with k = 1 for the end interval [ξ̂, η̂] = [−0.5, 1]
using a threshold φ = 0.6 and Jackson smoothing.
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(b) Polynomial filter ρ̂k with k = 2 for the end interval [ξ̂, η̂] = [−0.5, 1]
using a threshold φ = 0.6 and Jackson smoothing. This approach is
unfavorable in this case, since ρ̂k(−1) > τ for λ̂ = −1 outside of the
interval [ξ̂, η̂].

Figure 6: Handling end interval cases by using different degrees for the polynomial filter
ρ̂k.
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Algorithm 4 Computation of the polynomial filter ρ̂k from Eqs. (5)
and (7)

1: Input: Boundaries ξ and η of the interval of interest [ξ, η] ⊆ [λmin, λmax], the
extremal eigenvalues (or approximations) λmin and λmax of A, a minimum
starting degree kmin and a maximum degree kmax, the smoothing approach to
compute the coefficients gk

j (no smoothing, Jackson [Eq. (8)], or Lanczos [Eq.
(9)]), a threshold φinterior for interior intervals and a threshold φend for end
intervals.

2: Output: An optimal degree k, the center γ, a bar value τ and the set
N = {ν̂k

0 , ν̂k
1 , . . . , ν̂k

k} containing the normalized expansion coefficients ν̂k
j =

µj gk
j /ρk(γ) with j = 0, . . . , k. The polynomial filter ρ̂k can then be constructed

using Eq. (48). Further, τ can be used to filter out unwanted eigenvalues θj of
ρ̂k(Â) by checking θj < τ.

3: c = (λmax + λmin)/2 . See Eq. (6)

4: d = (λmax − λmin)/2

5: ξ̂ = (ξ − c)/d . Transform the interval boundaries of [ξ, η]

6: η̂ = (η − c)/d

7: if [ξ̂, η̂] is an end interval then

8: Compute the degree-one polynomial approximation ρ1(t) = gk
0µ0T0(t) +

gk
1µ1T1(t), where gk

0, gk
1 are Jackson smoothing coefficients (Eq. (8)).

9: ρ̂1(ξ̂) = ρ1(ξ̂)/ρ1(γ)

10: ρ̂1(η̂) = ρ1(η̂)/ρ1(γ)

11: if ρ̂1(ξ̂) < φ or ρ̂1(η̂) < φ then

12: k = 1

13: N = {ν0/ρ1(γ), ν1/ρ1(γ)}
14: τ = min(ρ̂1(ξ̂), ρ̂1(η̂))

15: return γ, k,N , and τ . ρ̂1 is a suitable polynomial filter

16: if ρ̂1 is not a suitable polynomial filter then

17: γ = 0.

18: for degree k = kmin, kmin + 1, . . . , kmax do

19: if [ξ̂, η̂] is an interior interval then

20: Compute γbalanced by first running two steps of the Newton iteration to
compute the root θroot of Eq. (16) using θc from Eq. (18) as initial guess.

21: if Newton iteration converged then

22: γbalanced = cos(θroot)

23: else

24: Solve the eigenvalue problem in Eq. (19), resulting in k eigenvalues γ̃j.

25: γbalanced = min
j=1,...,k

|γ̃j − cos(θc)|

26: Set γ = γbalanced

27: Set φ = φinterior

28: Compute gk
j by using the specified smoothing approach (no smoothing,

Jackson [Eq. (8)], or Lanczos [Eq. (9)]).
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Algorithm 5 Computation of the polynomial filter ρ̂k from Eqs. (7) and (5) (contin-
ued)

29: else

30: if [ξ̂, η̂] is an interval on the left end of [−1, 1] then

31: Set γ = −1. . Center the Dirac-delta function at the
left boundary of [−1, 1]

32: else if [ξ̂, η̂] is an interval on the right end of [−1, 1] then

33: Set γ = 1. . Center the Dirac-delta function at the
right boundary of [−1, 1]

34: φ = φend

35: Compute gk
j by explicitly using the Jackson smoothing approach (Eq. (8)).

36: Compute the expansion coefficients νj = µj gk
j with j = 0, . . . , k, where µj is

computed using Eq. (3)

37: Compute ρk(η̂) and ρk(γ), where ρk(t) = ∑k
j=0 νjTj(t).

38: if ρk(η̂)/ρk(γ) < φ then

39: N = {ν0/ρk(γ), . . . , νk/ρk(γ)}
40: τ = ρk(η)/ρk(γ)

41: break . ρ̂k is a suitable polynomial filter

42: if a suitable polynomial filter ρ̂k has been found then

43: return γ, k,N , and τ

44: else

45: Require a larger value for the maximum degree kmax.

3.7 combining the eigensolver and polynomial filtering

The thick-restart Lanczos algorithm (Algorithm 2) will be used to compute a pre-
scribed number nev of the largest eigenvalues of the matrix ρ̂k(Â), including the
corresponding eigenvectors. In this case, on Line 7 of Algorithm 2 the matrix-vector
product ρ̂k(Â)qi is computed instead of Aqi.

Let θn−nev+1 ≤ θn−nev+2 ≤ · · · ≤ θn denote the nev largest eigenvalues of ρ̂k(Â). In
a first step, from these extremal eigenvalues the eigenpairs (θi, ui) with θi < τ are
discarded. Next, for the remaining eigenpairs with θi ≥ τ the Rayleigh quotients
relative to the matrix A are evaluated by computing λ̃i = uT

i Aui. Finally, it is
checked if λ̃i ∈ [ξ, η].

Trilinos offers a parallel implementation of a block version of the Krylov-Schur
method (BKSM) [17] as part of the Anasazi package, which is provided by the
Anasazi::BlockKrylovSchurSolMgr class. As mentioned in [17], the Krylov-Schur method
applied to a real, symmetric (or complex Hermitian) matrix is identical to the thick
restart Lanczos algorithm of Wu and Simon [18]. Thus, on Line 3 of Algorithm
6 we use the Anasazi::BlockKrylovSchurSolMgr class to efficiently compute the nev
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largest eigenvalues of ρ̂k(Â). In this case, BKSM forms the orthonormal basis of the
Krylov subspace

Km(ρ̂k(Â), Q1) = span {Q1, ρ̂k(Â)Q1, . . . , ρ̂k(Â)m−1 Q1} , (50)

where Q1 ∈ Rn×b and b is the block size. Hence, the product ρ̂k(Â)qi is further
replaced with the matrix-multivector product ρ̂k(Â)Qi.

Algorithm 6 Eigensolver with polynomial filtering

1: Input: Matrix ρ̂k(Â), the bar value τ (Algorithm 4) and the number nev of
largest eigenvalues of ρ̂k(Â) the eigensolver should compute and return

2: Output: All eigenpairs (λ̃j, uj) with λ̃j ∈ [ξ, η] and the corresponding residual
norm rj = ‖Auj − λ̃juj‖

3: Compute the nev eigenpairs (θj, uj) with the largest magnitude of θj by ap-
plying the thick-restart Lanczos algorithm [12] (or the Krylov-Schur algorithm
[17]) to the matrix ρ̂k(Â).

4: for each resulting eigenpair (θj, uj) do

5: if θj < τ then

6: Ignore this pair.

7: else

8: Compute λ̃j = uH
j Auj.

9: if λ̃j 6∈ [ξ, η] then

10: Ignore this pair.

11: else

12: Keep the pair (λ̃j, uj).

13: return all eigenpairs (λ̃j, uj) with λ̃ ∈ [ξ, η] and the corresponding residual
norm rj = ‖Auj − λ̃juj‖

3.8 computation of the polynomial filter operator ρ̂k (Â)

In Anasazi, the Anasazi::Eigenproblem class encapsulates the information necessary
to define an eigenvalue problem and stores the solutions computed by an eigen-
solver. Further, it also stores the operators associated with an eigenproblem.

In our case, we want to specifically compute the nev largest eigenpairs of ρ̂k(Â)

on Line 3 of Algorithm 6. We thus need to provide a suitable implementation of the
Polynomial Filter Operator (PFO) ρ̂k(Â), which by using Eqs. (2) and (5) is defined
as

ρ̂k(Â) =
k

∑
j=0

ν̂k
j Tj(Â) , (51)

with ν̂k
j being defined in Eq. (47).
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The PFO in Eq. (51) is implemented as an Epetra_Operator object, the latter being
an interface for the implementation of real-valued double-precision operators. The
Epetra_Operator interface requires a deriving class to implement an Apply function,
which for the given PFO ρ̂k(Â) computes the matrix-multivector product

Y = ρ̂k(Â)X , (52)

where X, Y ∈ Rn×b are multivectors, with b being the block size5.
Using Eq. (7) we can write the product ρ̂k(Â)X as

ρ̂k(Â)X =
k

∑
j=0

ν̂k
j Tj(Â)X . (53)

Further, we can define Wj = Tj(Â)X and use the three-term recurrence of Cheby-
shev polynomials shown in Eq. (45) to get

Wj = 2 Â Wj−1 −Wj−2 with W0 = T0(Â)X = X and W1 = T1(Â)X = ÂX ,
(54)

thus replacing Eq. (53) with

ρ̂k(Â)X =
k

∑
j=0

ν̂k
j Wj . (55)

As explained in Section 3.2, the sparse matrices and multivectors are distributed
row-wise. Hence, we exploit the locality of the row-data on each rank by construct-
ing the product ρ̂k(Â)X row-wise. Algorithm 7 shows an outline of the distributed
computation of the product ρ̂k(Â)X as defined in Eq. (55).

5 The matrix-multivector product in Eq. (52) is used by the BKSM implementation in Trilinos to com-
pute the next multivector of the orthonormal basis spanning the Krylov subspace shown in Eq. (50)
after completion.
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Algorithm 7 Distributed computation of the product ρ̂k(Â)X from Eq. (53)

1: Input: Transformed matrix Â ∈ Rn×n (Eq. (6)), multivector X ∈ Rn×b and the
normalized expansion coefficients ν̂k

j = µj gk
j /ρk(γ) with j = 0, . . . , k.

2: Output: Multivector Y ∈ Rn×b, with Y = ρ̂k(Â)X.

3: for each rank p do

4: for each owned row i do

5: (W0)i, : = Xi, : . The subscript in Xi, : denotes the complete ith row of X

6: W1 = ÂX . Distributed sparse matrix-multivector multiplication

7: for each owned row i do

8: Yi, : = ν̂k
0(W0)i, : + ν̂k

1 (W1)i, : . Initialize first two terms of Eq. (55)

9: Wj−2 = W0

10: Wj−1 = W1

11: Wj = [ ], Wtmp = [ ]

12: for each polynomial degree j = 2, . . . , k do

13: Wtmp = ÂWj−1 . Distributed sparse matrix-multivector multiplication

14: for each owned row i do

15: (Wj)i, : = 2 (Wtmp)i, : − (Wj−2)i, :

16: Yi, : = Yi, : + ν̂k
j (Wj)i, :

17: Wj−2 = Wj−1

18: Wj−1 = Wj
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E X P E R I M E N TA L R E S U LT S

In this chapter we present the experimental results. In Section 4.1 the results of
interval-specific eigenmode computations close to the Boson peak regime involv-
ing multiple Hessian matrices are presented and analyzed. Section 4.2 shows the
performance results of our implementation of the PFO ρ̂k, where the scaling behav-
ior and parallel performance is examined. For both the computation and perfor-
mance results, the respective experimental setup and data set used are presented.

4.1 eigenmode computations

4.1.1 Experimental Setup

The eigenmode computations were carried out on the Euler cluster of the ETH
Zürich 1. Euler stands for Erweiterbarer, Umweltfreundlicher, Leistungsfähiger ETH-
Rechner and consists of Euler I (448 nodes, each equipped with two 12-core Intel
Xeon E5-2697v2 processors processors), Euler II (768 nodes, each equipped with
two 12-core Intel Xeon E5-2680v3 processors), and Euler III (1215 nodes, each
equipped with a quad-core Intel Xeon E3-1285Lv5 processor).

In the specified environment, our implementation worked with OpenMPI 1.65,
HDF5 1.8.12, Boost 1.57.0, and Trilinos 12.2.1. Further, the code has been compiled
with GCC 4.8.2 and the following optimization flags:

-ftree-vectorize -march=corei7-avx -mavx -std=c++11 -O3

4.1.2 Participation Ratio and Displacement Visualization

Using the utility from Chapter 3, 8 Hessian matrices H1, . . . , H8 ∈ R768000×768000

of a system with N = 256000 atoms have been partially diagonalized to capture
all eigenvalues λi = ω2

i and corresponding eigenmodes ui in the interval of inter-
est [0.1, 2]. The Hessian matrices Hi are derived from computer generated three-
dimensional model binary Lennard-Jones glasses computed by Derlet et al [5].

To quantify the amount of particles moving together in the vibrational eigen-
modes we use the participation ratio defined for each eigenmode ui as

PR(λi) =
1
N

(
∑N

j=1 ‖ui(j)‖2
2

)2

∑N
j=1 ‖ui(j)‖4

2

, (56)

where ui(j) ∈ R3 denotes the displacement vector of particle j for the eigenmode i.
PR = 1 denotes the involvement of all particles in the vibration of this mode, and
PR = 1/N means only an isolated particle is vibrating [3].

1 https://scicomp.ethz.ch/wiki/Euler

27
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Table 1: Tabular overview of properties of the Hessian matrices H1, . . . , H8 of a system with
N = 256000 atoms. The second column contains the NNZ of Hi, the third column
shows the total number of eigenvalues λj ∈ [0.1, 2], and in the third column the
maximal residual norm over all computed residual norms ‖rj‖ for a given Hi is
displayed, where the residual vector is defined as rj = Hiuj − λjuj. Finally, in the
last column the Time to Solution (TTS) for the eigensolver part of the utility (Line
7 in Algorithm 3) is shown; the TTS is based on computations with 48 cores on
Euler.

Matrix NNZ Num. EV in [0.1, 2] Max. ‖rj‖ TTS

H1 191 893 806 1 068 1.1303× 10−9
5 304.0621 s

H2 191 883 888 1 030 7.2249× 10−9
4 850.0367 s

H3 191 903 166 1 050 3.5170× 10−8
5 813.8738 s

H4 191 851 848 1 075 7.0602× 10−9
5 863.0400 s

H5 191 832 588 1 077 9.1160× 10−9
5 310.6390 s

H6 191 859 012 1 079 4.0634× 10−9
5 407.2488 s

H7 191 887 542 1 058 1.9001× 10−9
5 398.9464 s

H8 191 853 378 1 051 8.0480× 10−9
5 371.8900 s

Fig. 7 displays the participation ratios resulting from the partial diagonalization
of the Hessian matrices Hi, i = 1, . . . , 8. As we can observe from the data, each plot
shows a rather interesting behavior for participation ratios in the region of λ ∈
[0.7, 1.0]. This region, where the participation ratio reaches a minimum, contains
the Boson peak [5]. Further, we can recognize two regimes from the data. The peak
structure in the regime with eigenvalues λ < 0.7 actually corresponds to sound
due to the rather ordered structure denoted by large values for the participation
ratios. For the regime λ ≥ 0.7 the participation ratio instead is very small, and we
observe disordered vibrations resulting in the breakup of sound.

In Fig. 8 the resulting displacements in the x− y plane of some interesting eigen-
modes of H1 are visualized. The eigenmodes corresponding to smaller eigenvalues
shown in Figs. 8a and 8b show a plane-wave-like character due to having peak
participation ratios. For eigenmodes belonging to larger eigenvalues in [0.1, 2] as
displayed in Figs. 8c and 8d, we can see that the shape of the eigenmodes becomes
more complex, since for one the plane-wave-like character is not present anymore
and patches with large displacements are formed.

Finally, Fig. 8e shows the displacements for an eigenmode corresponding to a
high frequency (large eigenvalue). In the top right corner we recognize rather large
vibrations caused by a small number of particles. Although the participation ratio
is rather small, further analysis using larger systems would be needed to actually
classify the vibrations as really localized in such cases.
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Figure 7: Eigenvalues λ ∈ [0.1, 2.0] of the different samples Hi, i = 1, 2, . . . , 8 plotted
against the participation ratios.
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Figure 8: Displacement plots for different eigenmodes of H1. The plots show a cut along
the x − y plane (δz = 0.15 Å) containing the particle with the largest displace-
ment. The arrows are proportional to the displacements of the particles, and the
displacements have been magnified ×300 for visibility reasons.
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4.2 performance measurements

4.2.1 Experimental Setup

All the performance measurements were carried out on the Ra cluster2 at PSI. The
cluster itself consists of 32 nodes, of which 16 are equipped with 2 Intel Xeon E5-
2690v3 (2.60 GHz) processors, each providing 12 cores, for a total of 24 cores per
node. The other 16 nodes are equipped with 2 Intel Xeon E5-2697Av4 (2.60 GHz)
processors, each processor providing 16 cores, resulting in 32 cores per node. Our
performance measurements were run on four nodes that are part of the latter 16

nodes, thus allowing to perform measurements with up to 128 cores.
Our performance tests have been compiled with GCC 6.2.0 and the following

optimization flags:

-ftree-vectorize -march=core-avx2 -mavx2 -std=c++11 -O3

Further, the following libraries were used: OpenMPI 1.10.4, HDF5 1.8.18, Boost
1.62.0, and Trilinos 12.10.1.

The performance measurements are all based on computations with a Hessian
matrix H1 of dimension n1 = 96 000 with nnz = 23 985 126 non-zero elements.

The data shown in the speedup, parallel efficiency, strong scaling and weak
scaling plots for our implementations are based on the average time over 10 runs of
a given computation on a given number of cores. Further, 2 warm-up computations
are run before the beginning of the actual measurements. This procedure avoids
computations on an empty (“cold”) cache, ensuring that after the first warm-up
runs the cache is filled with data, resulting in fewer cache-misses during the first
performance measurement compared to a cold-cache run.

Finally, all performance measurements presented in this section were carried out
on Np = 1, 2, 4, . . . , 128 cores.

4.2.2 Polynomial Filter Operator ρ̂k(Ĥ)

For these performance tests we measured the average wall-clock time it takes to
compute the matrix-multivector product

ρ̂k(Ĥ1)X (57)

using our distributed implementation of the PFO ρ̂k(Ĥ) shown in Algorithm 7,
where X ∈ Rn1×b, b is the block size, and Ĥ1 is the transformed matrix H1.

4.2.2.1 Speedup and Parallel Efficiency

The speedup Sp is defined to be the ratio

Sp =
t1

tp
, (58)

2 https://www.psi.ch/photon-science-data-services/offline-computing-facility-for-sls-and-swissfel-
data-analysis

https://www.psi.ch/photon-science-data-services/offline-computing-facility-for-sls-and-swissfel-data-analysis
https://www.psi.ch/photon-science-data-services/offline-computing-facility-for-sls-and-swissfel-data-analysis
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where t1 is the time to execute the workload on one core and tp is the time to
execute the workload on p cores. The speedup can be also written as

Sp =
t1

tp
=

1
fs + fp/p

, (59)

where fs is the serial fraction of a routine, fp the parallel fraction of the same
routine and p the number of cores.

The parallel efficiency is defined as

Ep =
t1

p tp
=

Sp

p
, (60)

and depicts the speedup per core.
Fig. 9 shows the speedup and parallel efficiency of our implementation of Eq.

(57) for an experiment with a large degree k = 500 and block size b = 32, both
parameters being held fixed during the measurements. The green line depicts the
ideal linear speedup. From the plot shown in Fig. 9 we can infer that the speedup
of our implementation is linear, but still less than the ideal speedup. Fig. 10 shows
the speedup and parallel efficiency for the same implementation with k = 151 and
b = 128, which shows asymptotically a similar behavior to the previous experiment
with a larger degree k and smaller block size b. Reason for these results is for one
the communication overhead caused by the distributed sparse Matrix-Multivector
Multiplication (spMMM) in Algorithm 7. The distributed spMMM used is the default
implemented spMMM in Trilinos based on the row-wise distribution of the data as
defined in Section 3.2.
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Figure 9: Measured speedup and parallel efficiency of the polynomial operator implemen-
tation with k = 500 and b = 32, with the time measurements being averaged over
10 runs.
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Figure 10: Measured speedup and parallel efficiency of the matrix-multivector multiplica-
tion in Eq. (57) with k = 151 and b = 128, with the time measurements being
averaged over 10 runs.

4.2.2.2 Strong and Weak Scaling

For the weak scaling measurements of Algorithm 7 the problem size assigned
to each core stays constant and additional cores are used to solve a larger total
problem. In our case, the problem size is depicted either by the block size b of X
or by the polynomial degree k of ρk(Ĥ) in Eq. (53), and is scaled linearly with the
number of cores.

Fig. 11a shows the weak scaling of the matrix-multivector multiplication with
increasing block size. Fig. 11b instead shows the weak scaling with increasing poly-
nomial degree. As can be observed from the plots, the weak scaling measurements
show quite an increase in the time to solution, caused mostly by the previously
mentioned communication overhead from the spMMM with the row-based distribu-
tion pattern.
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(b) k = 5 per core and overall fixed b = 8.

Figure 11: Weak scaling measurements of the matrix-multivector multiplication in Eq. (57)
with increasing block size b (left) and increasing polynomial degree k (right).

The strong scaling measurements were carried out by keeping the total block size
b of X or total polynomial degree k of ρk(Ĥ) constant and increasing the number of
cores. Both strong scaling plots shown in Fig. 12a and Fig. 12b respectively display
linear behavior with increasing number of cores.
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Figure 12: Strong scaling measurements of the matrix-multivector multiplication in Eq.
(57). The blue line results from a linear regression using the measured timings.
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C O N C L U S I O N A N D F U T U R E D E V E L O P M E N T S

The goal of this thesis was to compute the eigenpairs of a Hessian matrix H in a
given interior interval of the spectrum close to the Boson peak regime by using a
polynomial filtered eigensolver.

We were able to successfully run multiple interval-specific eigenpair computa-
tions close to the Boson peak regime involving Hessian matrices H ∈ R768000×768000

of systems with N = 256000 atoms. Our calculations concur with the previous re-
sults presented by Derlet et al [5].

With the current implementation of the PFO we managed to measure a maximal
speedup of 68 with 128 cores, which demonstrates that our implementation scales
up with increasing number of cores. Although the speedup behavior is satisfac-
tory, our performance investigations show that there is still room for improvement.
Since most of the work is done by the spMMM, in a future endeavor it would be ad-
vantageous to actually try different parallel distribution patterns and implement
the spMMM based on these patterns. One example of such a distribution pattern is
the two-dimensional block data distribution as shown in e.g. [4].

To actually further study the anomalous behavior around the Boson peak region
of the spectrum, the partial diagonalization of Hessian matrices of systems with
millions of atoms is required, and our current implementation should be able to
handle computations with larger matrices. Nonetheless, with increasing matrix di-
mensions the number of eigenpairs to be computed within an interval increases
also, and thus it would be favorable to further distribute the computational work
on a given interval to different ranks based on smaller subintervals. A good spec-
trum slicing strategy is to divide the interval based on the distribution of the
eigenvalues, which can be accomplished by computing estimations of the Density
of States (DOS) [12, 13]. The methods for spectral density estimation shown in [13]
have the common characteristics that they all use a stochastic and averaging tech-
nique to obtain an approximate DOS. A very similar technique is used by our par-
allel implementation of the estimation of the eigenvalue count [6]. Thus, extending
our implementation with methods for the estimation of the spectral density could
be accomplished in rather reasonable time.

Computations at the end of the spectrum of a Hessian matrix are also of some
interest for the analysis of the general behavior of particles with increasing system
sizes. In this case, an improved approximation of the extremal eigenvalues would
be needed to actually deliver reliable results. The approach presented by Zhou and
Li [20] provides tight upper bounds with low cost, and could be very suitable for
the reliable computation of eigenpairs in the extremal regions of the spectrum.

Finally, detailed studies of the distribution of eigenvalues in intervals close to
the Boson peak regime could be beneficial to actually tell more about the accuracy
of the computed eigenmodes. Also, depending on the distribution of eigenval-
ues, more suitable strategies for the estimation of the spectral density could be
employed, possibly resulting in an improved distribution of interval-specific com-
putations for a given interval if needed.
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a.1 user manual : bosonpeak utility

In this section we are going to show the steps to first deploy, then compile, and
finally run the BosonPeak Utility (BPU).

a.1.1 Deploying the BosonPeak Utility on the Euler (ETH Zürich) and/or Ra (PSI) Clus-
ter

In a first step, we need to load all the necessary environment variables and pro-
gram libraries. In the folder BosonPeak/scripts/cluster_setup two bash scripts can
be found that actually accomplish this task. The script setup-euler.sh actually can
be used to deploy the BPU on the Euler cluster, whereas setup-psi.sh can be used
to do the same on the Ra cluster at PSI.

The scripts can be run with the following command (to be issued on the console):

> source setup-<euler|psi>.sh

where <euler|psi> can be replaced with either euler or psi, i.e., in this case either
run source setup-euler.sh or source setup-psi.sh

The source command is important in this scenario, since it will actually load all
the environment variables into the global variable space for the current session.
Without the source command the environment variables won’t be loaded correctly,
and the compilation later will fail, since it depends on these variables.

a.1.2 Code Compilation

Once the steps in Section A.1.1 have been successfully done, we can move on to
compiling the BPU source code.

First, change into the source code directory:

> cd BosonPeak/src/bosonpeak_utility

The folder contains the following files:

- BosonPeak_Utility.cpp

- CMakeLists.txt

- do-configure-euler.sh

- do-configure-psi.sh

The first file consists of the C++ code of the utility, which we are going to compile
later. CMakeLists.txt contains the project configuration and will be used by CMake
to actually build the project. Finally, the do-configure-*.sh files actually, when run,
issue the CMake command and load the necessary Trilinos environment variables.

To actually build all the necessary files for the compilation of the source code
we only need to run the corresponding bash script:
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> ./do-configure-<euler|psi>.sh

After this, we can simply compile the source code using multiple cores with

> make -j<nr-cores>

where <nr-cores> can be replaced with the number of cores to use for compiling
the code. If the compilation was successful, you can find the resulting binary in
the bin folder of the same directory (or simply as an absolute path: BosonPeak/src
/bosonpeak_utility/bin/bosonpeak_utility). This is the executable we are going to
use later to actually run different computations.

a.1.3 Configuring the BosonPeak Utility to Run Different Calculations

The XML configuration file contains all the necessary configuration parameters to
run different computations, be it an approximation of the extremal eigenvalues,
the estimation of the eigenvalue count in an interval, or the computation of a
specified number of eigenpairs in an interval. The BPU can then be launched with
the absolute path to the XML configuration file as a parameter:

> cd BosonPeak/src/bosonpeak_utility

> ./bin/bosonpeak_utlity --cf=/path/to/config.xml

a.1.3.1 Estimation of the Extremal Eigenvalues of A

For the estimation of the extremal eigenvalues λmin and λmax of the matrix A we
first need to specify the path to the HDF5 file containing the matrix entries and
which of the extremal eigenvalues we want to estimate. If we actually already
know the extremal eigenvalues, we can simply specify them with the parameter
list Spectrum Boundaries Approximation as shown in Listing 1.

Listing 1: Configuration of the extremal eigenvalues to be used for the transformation of
the matrix as defined in Eq. (6).

<ParameterList name="BosonPeak Configuration">

<Parameter name="Verbose" type="bool" value="1" />

<ParameterList name="Matrix Import">

<Parameter name="Path to Matrix HDF5 File" type="string" value="/

cluster/matrix.h5"/>

</ParameterList>

<ParameterList name="Spectrum Boundaries Approximation">

<Parameter name="LambdaMin" type="double" value="0.0" />

<Parameter name="LambdaMax" type="double" value="3.0" />

</ParameterList>

</ParameterList>

If we want to estimate both or just a single extremal eigenvalue, we can specify
the Spectrum Boundaries Approximation parameter list (Listing 1) and leave out the
eigenvalues we want to estimate. The utility will then estimate the extremal eigen-
values based on the missing specifications in the Spectrum Boundaries Approximation

parameter list.
By default we run 10 iterations of the Lanczos algorithm for the estimation of

the required extremal eigenvalues. If we wish to use a larger number of Lanczos
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iterations, define a larger convergence tolerance, or simply change the perturba-
tion factor, we can do so by adding the Eigensolver parameter list to the Spectrum

Boundaries Approximation parameter list as shown in Listing 2. In the example
shown in Listing 2, LambdaMax is left out, thus letting the utility compute an approx-
imation for λmax. Further, the Lanczos algorithm used for the approximation is
run with the configuration parameters specified in the Eigensolver parameter list.
In this scenario, BPU will print out the approximated extremal eigenvalues to the
console once the computation is finished.

Listing 2: Extended configuration for the approximation of the extremal eigenvalues.

<ParameterList name="BosonPeak Configuration">

<Parameter name="Verbose" type="bool" value="1" />

<ParameterList name="Matrix Import">

<Parameter name="Path to Matrix HDF5 File" type="string" value="/

cluster/matrix.h5"/>

</ParameterList>

<ParameterList name="Spectrum Boundaries Approximation">

<Parameter name="LambdaMin" type="double" value="0.0" />

<ParameterList name="Eigensolver">

<Parameter name="Block Size" type="int" value="1" />

<Parameter name="Num Blocks" type="int" value="20" />

<Parameter name="Maximum Restarts" type="int" value="10" />

<Parameter name="Convergence Tolerance" type="double" value="1e-6"

/>

<Parameter name="Perturbation Factor" type="double" value="0.15" /

>

</ParameterList>

</ParameterList>

</ParameterList>

a.1.3.2 Estimation of the Eigenvalue Count in a Specified Interval

In case the eigenvalue count for a given interval of interest is not known before-
hand (as happens most of the times), BPU can be configured to run an eigenvalue
count estimation. To configure different values for both parameters nv and p as
defined in Section 3.5, we can specify a Eigenvalue Count Estimation parameter list
as shown in Listing 3. Num Random Vectors is used to specify nv and Degree to spec-
ify p for the estimation of the eigenvalue count with Eq. (44). Additionally, for the
estimation of the eigenvalue count it is required to specify the interval of interest
by adding the Interval of Interest parameter list. With the configuration shown
in Listing 3, BPU will print out the estimated eigenvalue count for the specified
interval to the console once the computation is finished.

Listing 3: Configuration for the estimation of the eigenvalue count

<ParameterList name="BosonPeak Configuration">

<Parameter name="Verbose" type="bool" value="1" />

<ParameterList name="Matrix Import">

<Parameter name="Path to Matrix HDF5 File" type="string" value="/

cluster/matrix.h5"/>
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</ParameterList>

<ParameterList name="Spectrum Boundaries Approximation">

<Parameter name="LambdaMin" type="double" value="0.0" />

<Parameter name="LambdaMax" type="double" value="3.0" />

</ParameterList>

<ParameterList name="Interval of Interest">

<Parameter name="Interval Start" type="double" value="0.1" />

<Parameter name="Interval End" type="double" value="1" />

</ParameterList>

<ParameterList name="Eigenvalue Count Estimation">

<Parameter name="Num Random Vectors" type="int" value="40"/>

<Parameter name="Degree" type="int" value="100"/>

</ParameterList>

</ParameterList>

a.1.3.3 Eigensolver Configuration

Once we have estimations for the extremal eigenvalues and an estimated number
of eigenvalues in the interval of interest, we are ready to run eigenpair compu-
tations in the specific interval. An example of such a configuration is shown in
Listing 4. Once the computation has finished, files containing the computed eigen-
values, eigenvectors and norms of all residuals will be written to the location spec-
ified by the Path to Output Folder parameter. The files are all stored in the MM file
format.

Listing 4: Complete configuration for the computation of eigenpairs in a specific interval
of the spectrum.

<ParameterList name="BosonPeak Configuration">

<Parameter name="Verbose" type="bool" value="1" />

<ParameterList name="Matrix Import">

<Parameter name="Path to Matrix HDF5 File" type="string" value="/

cluster/matrix.h5"/>

</ParameterList>

<ParameterList name="Spectrum Boundaries Approximation">

<Parameter name="LambdaMin" type="double" value="0.0" />

<Parameter name="LambdaMax" type="double" value="1919.756431988085296"

/>

</ParameterList>

<ParameterList name="Interval of Interest">

<Parameter name="Interval Start" type="double" value="0.0" />

<Parameter name="Interval End" type="double" value="3.0" />

</ParameterList>

<ParameterList name="Filter Polynomial Computation">

<Parameter name="Min Degree" type="int" value="2"/>

<Parameter name="Max Degree" type="int" value="1000"/>

<Parameter name="Smoother" type="string" value="Jackson"/>
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<Parameter name="Threshold End Interval" type="double" value="0.6"/>

<Parameter name="Threshold Interior Interval" type="double" value="0.9

"/>

</ParameterList>

<ParameterList name="Interval-Specific Eigensolver">

<Parameter name="Block Size" type="int" value="4" />

<Parameter name="Maximum Restarts" type="int" value="500" />

<Parameter name="Num Eigenvalues" type="int" value="300" />

<Parameter name="Num Blocks" type="int" value="225" />

<Parameter name="Convergence Tolerance" type="double" value="1e-8" />

<Parameter name="Path to Output Folder" type="string" value="/cluster/

output/" />

</ParameterList>

</ParameterList>

a.1.4 Building and Running the BosonPeak Unit Tests

The BosonPeak source code comes with a test suite, which is based on data-driven
testing and has been implemented to support a test-driven development approach.

To actually run the test suite, we first need to generate the test data. For this,
a test data generator written in MATLAB is provided. The test data generator
will create all the necessary test data files needed to run all the unit and inte-
gration tests. To accomplish this, simply point MATLAB to the BosonPeak/test/

testdata_generators/matlab directory and run the TestDataGenerator_Main.m script
from there. Once all the test data has been successfully generated, change into the
BosonPeak/test folder, run the corresponding setup file and compile everything
with make:

> cd BosonPeak/test

> ./do-configure-<euler|psi>.sh

> make -j<nr-cores>

After a successful build, simply run all tests with the following command:

> ./bin/bosonpeak_tests

a.2 using the polynomial filter matlab implementation

A complete MATLAB implementation of the least-squares polynomial filter as de-
scribed in Section 2.1 is provided in the BosonPeak/src/matlab folder. This code has
been mainly implemented for unit and integration testing purposes and is thus ex-
tensively used by the test data generator mentioned in Section A.1.4. Nonetheless,
the provided implementation can also be used to run computations on smaller ma-
trices or for visualization purposes. Examples of such computations are shown in
Listings 5 and 6.
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Listing 5: Example code showing the usage of the MATLAB implementation of the poly-
nomial filter for the computation of eigenvalues in a specific interval of interest.
We are using a simple diagonal matrix A with spectrum σ = {1, 2, 3, 4, . . . , 20}
and compute all the eigenvalues λi in the interval [11.5, 14.2]. Before running
this code it is important to first load all the necessary environment variables by
running the setup-<euler|psi>.sh script as described in Section A.1.1.

BOSONPEAK_MATLAB_SOURCE_DIR = ’BOSONPEAK_MATLAB_SOURCE_DIR’;

addpath(strcat(getenv(BOSONPEAK_MATLAB_SOURCE_DIR), ’/’));

addpath(strcat(getenv(BOSONPEAK_MATLAB_SOURCE_DIR), ’/constants’));

addpath(strcat(getenv(BOSONPEAK_MATLAB_SOURCE_DIR), ’/types’));

% Specify some example spectrum boundaries

lambda_min = 1;

lambda_max = 20;

% Define a simple diagonal matrix

matrix_A = diag((lambda_min:lambda_max));

% Polynomial filter configuration

min_degree = 2;

max_degree = 300;

smoother = BosonPeak_SmootherType.JACKSON;

threshold_interior_interval = 0.6;

threshold_end_interval = 0.3;

% We want to compute all the eigenpairs in the

% interval of interest [11.5, 17.2]

interval_start = 11.5;

interval_end = 14.2;

% Compute the polynomial filter

[gamma_, bar_value, optimal_degree, expansion_coefficients] =

computeFilterPolynomial(lambda_min, lambda_max, interval_start,

interval_end, min_degree, max_degree, smoother,

threshold_interior_interval, threshold_end_interval);

fprintf(’\n=======================================\n’);

fprintf(’Configuration of polynomial filter\n’);

fprintf(’-----------------------------------------\n’);

fprintf(’gamma_ = %.15f\n’, gamma_);

fprintf(’bar_value = %.15f\n’, bar_value);

fprintf(’optimal_degree = %d\n’, optimal_degree);

fprintf(’=========================================\n’);

% Compute the scaling factors and transform the matrix H

[c,d] = computeScalingFactors(lambda_min, lambda_max);

matrix_A_hat = transformMatrix(matrix_A, c, d);

% Compute the matrix rho_k(A_hat) by using the

% Chebyshev three-term recurrence and the computed

% polynomial filter parameters

T_jm2 = eye(size(matrix_A_hat));

T_jm1 = matrix_A_hat;

rho_matrix_A_hat_0 = expansion_coefficients(1) * T_jm2;
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rho_matrix_A_hat = zeros(size(matrix_A));

if(optimal_degree == 0)

rho_matrix_A_hat = rho_matrix_A_hat_0;

elseif (optimal_degree == 1)

rho_matrix_A_hat = rho_matrix_A_hat_0 + expansion_coefficients(2) * T_jm1;

else

rho_matrix_A_hat = rho_matrix_A_hat_0 + expansion_coefficients(2) * T_jm1;

for j=3:optimal_degree+1

T_j = 2 * matrix_A_hat * T_jm1 - T_jm2;

T_jm2 = T_jm1;

T_jm1 = T_j;

rho_matrix_A_hat = rho_matrix_A_hat + expansion_coefficients(j) * T_j;

end

end

% Compute all eigenvalues of rho_k(A_hat),

% since it’s only a small matrix

[eigvecs_rho, eigvals_matrix_rho] = eig(full(rho_matrix_A_hat));

eigvals_rho = diag(eigvals_matrix_rho);

n_eigvecs = size(eigvecs_rho, 2);

fprintf(’\n=======================================\n’);

fprintf(’Eigenvalues in interval of interest\n’);

fprintf(’-----------------------------------------\n’);

for i=1:n_eigvecs

% Eigenvalues smaller than the bar value are discarded

if(eigvals_rho(i) >= bar_value)

% Compute Rayleigh quotient

eigval = eigvecs_rho(:,i)’ * matrix_A * eigvecs_rho(:,i);

if((eigval >= interval_start) && (eigval <= interval_end))

fprintf(’Eigval %.3f is in [%.3f, %.3f]\n’, eigval, interval_start

, interval_end);

end

end

end

fprintf(’=======================================\n’);

% Output on MATLAB console:

% =========================================

% Configuration of polynomial filter

% -----------------------------------------

% gamma_ = 0.250076644878696

% bar_value = 0.599538469253713

% optimal_degree = 20

% =========================================

% =========================================

% Eigenvalues in interval of interest

% -----------------------------------------

% Eigval 14.000 is in [11.500, 14.200]
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% Eigval 12.000 is in [11.500, 14.200]

% Eigval 13.000 is in [11.500, 14.200]

% =========================================

Listing 6: Example code showing the usage of the MATLAB implementation of the polyno-
mial filter for the visualization of the resulting filter. Fig. 13 shows the resulting
plot from this code. Before running this code it is important to first load all the
necessary environment variables by running the setup-<euler|psi>.sh script
as described in Section A.1.1.

BOSONPEAK_MATLAB_SOURCE_DIR = ’BOSONPEAK_MATLAB_SOURCE_DIR’;

addpath(strcat(getenv(BOSONPEAK_MATLAB_SOURCE_DIR), ’/’));

addpath(strcat(getenv(BOSONPEAK_MATLAB_SOURCE_DIR), ’/constants’));

addpath(strcat(getenv(BOSONPEAK_MATLAB_SOURCE_DIR), ’/types’));

% Specify some example spectrum boundaries

lambda_min = 1;

lambda_max = 20;

% Polynomial filter configuration

min_degree = 2;

max_degree = 300;

smoother = BosonPeak_SmootherType.JACKSON;

threshold_interior_interval = 0.6;

threshold_end_interval = 0.3;

% We want to compute all the eigenpairs in the

% interval of interest [11.5, 17.2]

interval_start = 11.5;

interval_end = 14.2;

% Compute the polynomial filter

[gamma_, bar_value, optimal_degree, expansion_coefficients] =

computeFilterPolynomial(lambda_min, lambda_max, interval_start,

interval_end, min_degree, max_degree, smoother,

threshold_interior_interval, threshold_end_interval);

% Plotting setup

n_x = 100;

% Define the data points where the polynomial filter should be

% evaluated

x = linspace(BosonPeak_Constants.REFERENCE_INTERVAL_LEFT_ENDPOINT_VALUE,

BosonPeak_Constants.REFERENCE_INTERVAL_RIGHT_ENDPOINT_VALUE, n_x);

% Vector containing the values of the polynomial filter evaluated at

% each point contained in x

rho_x = zeros(1, n_x);

for i=1:n_x

rho_x(i) = evalRho(x(i), optimal_degree, expansion_coefficients);

end

% Compute the scaling factors and transform the boundaries of the

% interval of interest

[c,d] = computeScalingFactors(lambda_min, lambda_max);
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interval_start_hat = (interval_start - c) / d;

interval_end_hat = (interval_end - c) / d;

polynomial_filter_plot = figure;

set(gca,’fontsize’,16)

hold on;

endpoint_offset = 0.2;

min_rho_x = 0;

max_rho_x = 1;

xlim([BosonPeak_Constants.REFERENCE_INTERVAL_LEFT_ENDPOINT_VALUE -

endpoint_offset, BosonPeak_Constants.

REFERENCE_INTERVAL_RIGHT_ENDPOINT_VALUE + endpoint_offset]);

ylim([min_rho_x - endpoint_offset, max_rho_x + endpoint_offset]);

xlabel(’$\hat\lambda$’,’Interpreter’,’LaTex’);

ylabel(’$\rho(\hat\lambda)$’,’Interpreter’,’LaTex’);

line([interval_start_hat interval_start_hat], [min_rho_x, max_rho_x], ’Color’,

’red’,’LineStyle’,’--’, ’LineWidth’, 2);

line([interval_end_hat interval_end_hat], [min_rho_x, max_rho_x], ’Color’,’red

’,’LineStyle’,’--’, ’LineWidth’, 2);

plot(x, rho_x, ’-’, ’Color’, ’blue’, ’LineWidth’, 2);
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Figure 13: Polynomial filter ρ̂k (Eq. (5)) computed and plotted by using the MATLAB code
displayed in Listing 6.

a.3 converting mm files storing large symmetric matrices to trili-
nos compatible hdf5 files

As part of this project, the Hessian matrices were provided in the symmetric MM

format. To actually import such a matrix via BPU we first have to convert the
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MM file to a Trilinos compatible HDF5 file. This is accomplished by using the
convert_mm_matrix_to_hdf5.py script located in the BosonPeak/scripts/matrix_converter

directory. Just specify the path to the source file containing the matrix entries in
the symmetric MM format and the path to the destination HDF5 file:

> cd BosonPeak/scripts/matrix_converter

> python convert_mm_matrix_to_hdf5.py /source/matrix.mm /destination/matrix.

hdf5

Since we want to be able to convert very large files (up to hundreds of Gigabytes),
we implemented a buffered conversion approach to avoid overflowing the main
memory, meaning that we only load and convert small data chunks at a time. The
size of the data chunks can be specified by supplying the Python script with a
third parameter, namely the size of the data chunks in Bytes:

> python convert_mm_matrix_to_hdf5.py /source/matrix.mm /destination/matrix.

hdf5 1000000

In the above example, the script will be loading and converting 1 Megabyte of data
at a time.
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